Yu Ma 3a6358c0db percpu-internal/pcpu_chunk: re-layout pcpu_chunk structure to reduce false sharing
When running UnixBench/Execl throughput case, false sharing is observed
due to frequent read on base_addr and write on free_bytes, chunk_md.

UnixBench/Execl represents a class of workload where bash scripts are
spawned frequently to do some short jobs.  It will do system call on execl
frequently, and execl will call mm_init to initialize mm_struct of the
process.  mm_init will call __percpu_counter_init for percpu_counters
initialization.  Then pcpu_alloc is called to read the base_addr of
pcpu_chunk for memory allocation.  Inside pcpu_alloc, it will call
pcpu_alloc_area to allocate memory from a specified chunk.  This function
will update "free_bytes" and "chunk_md" to record the rest free bytes and
other meta data for this chunk.  Correspondingly, pcpu_free_area will also
update these 2 members when free memory.

Call trace from perf is as below:
+   57.15%  0.01%  execl   [kernel.kallsyms] [k] __percpu_counter_init
+   57.13%  0.91%  execl   [kernel.kallsyms] [k] pcpu_alloc
-   55.27% 54.51%  execl   [kernel.kallsyms] [k] osq_lock
   - 53.54% 0x654278696e552f34
        main
        __execve
        entry_SYSCALL_64_after_hwframe
        do_syscall_64
        __x64_sys_execve
        do_execveat_common.isra.47
        alloc_bprm
        mm_init
        __percpu_counter_init
        pcpu_alloc
      - __mutex_lock.isra.17

In current pcpu_chunk layout, `base_addr' is in the same cache line with
`free_bytes' and `chunk_md', and `base_addr' is at the last 8 bytes.  This
patch moves `bound_map' up to `base_addr', to let `base_addr' locate in a
new cacheline.

With this change, on Intel Sapphire Rapids 112C/224T platform, based on
v6.4-rc4, the 160 parallel score improves by 24%.

The pcpu_chunk struct is a backing data structure per chunk, so the
additional memory should not be dramatic.  A chunk covers ballpark
between 64kb and 512kb memory depending on some config and boot time
stuff, so I believe the additional memory used here is nominal at best.

Working the #s on my desktop:
Percpu:            58624 kB
28 cores -> ~2.1MB of percpu memory.
At say ~128KB per chunk -> 33 chunks, generously 40 chunks.
Adding alignment might bump the chunk size ~64 bytes, so in total ~2KB
of overhead?

I believe we can do a little better to avoid eating that full padding,
so likely less than that.

[dennis@kernel.org: changelog details]
Link: https://lkml.kernel.org/r/20230610030730.110074-1-yu.ma@intel.com
Signed-off-by: Yu Ma <yu.ma@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Acked-by: Dennis Zhou <dennis@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19 16:19:29 -07:00
2023-06-19 16:19:25 -07:00
2023-06-19 16:19:25 -07:00
2022-09-28 09:02:20 +02:00
2023-05-28 07:49:00 -04:00

Linux kernel
============

There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.  The formatted documentation can also be read online at:

    https://www.kernel.org/doc/html/latest/

There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
Description
TBS linux open source drivers
Readme 3 GiB
Languages
C 97.5%
Assembly 1.1%
Shell 0.5%
Makefile 0.3%
Python 0.2%