Files
linux_media/drivers/media/dvb-frontends/mxl58x.c
2025-03-16 23:46:40 +02:00

1609 lines
45 KiB
C

/*
* Driver for the Maxlinear MX58x family of tuners/demods
*
* Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de>
* Marcus Metzler <mocm@metzlerbros.de>
* developed for Digital Devices GmbH
*
* based on code:
* Copyright (c) 2011-2013 MaxLinear, Inc. All rights reserved
* which was released under GPL V2
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2, as published by the Free Software Foundation.
*
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
* Or, point your browser to http://www.gnu.org/copyleft/gpl.html
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/version.h>
#include <linux/mutex.h>
#include <linux/vmalloc.h>
#include <asm/div64.h>
#include <linux/unaligned.h>
#include "mxl58x.h"
#include "mxl58x_regs.h"
#include "mxl58x_defs.h"
#define BYTE0(v) ((v >> 0) & 0xff)
#define BYTE1(v) ((v >> 8) & 0xff)
#define BYTE2(v) ((v >> 16) & 0xff)
#define BYTE3(v) ((v >> 24) & 0xff)
#define MXL58X_DEFAULT_FIRMWARE "dvb-fe-mxl5xx.fw"
static int mode;
module_param(mode, int, 0444);
MODULE_PARM_DESC(mode,
"Multi-switch mode: 0=quattro/quad 1=normal direct connection");
static unsigned int rfsource;
module_param(rfsource, int, 0644);
MODULE_PARM_DESC(rfsource, "RF source selection for direct connection mode (default:0 - auto)");
LIST_HEAD(mxllist);
struct mxl_base {
struct list_head mxllist;
u8 adr;
struct i2c_adapter *i2c;
u32 count;
u32 type;
u32 chipversion;
u32 clock;
struct mutex i2c_lock;
struct mutex status_lock;
u8 buf[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN+8];
u32 cmd_size;
u8 cmd_data[MAX_CMD_DATA];
struct mxl58x_cfg *cfg;
void (*write_properties) (struct i2c_adapter *i2c,u8 reg, u32 buf);
void (*read_properties) (struct i2c_adapter *i2c,u8 reg, u32 *buf);
void (*write_eeprom) (struct i2c_adapter *i2c,u8 reg, u8 buf);
void (*read_eeprom) (struct i2c_adapter *i2c,u8 reg, u8 *buf);
};
struct mxl {
struct mxl_base *base;
struct dvb_frontend fe;
u32 demod;
u32 rf_in;
};
static void convert_endian(u8 flag, u32 size, u8 *d)
{
u32 i;
if (!flag)
return;
for (i = 0; i < (size & ~3); i += 4) {
d[i + 0] ^= d[i + 3];
d[i + 3] ^= d[i + 0];
d[i + 0] ^= d[i + 3];
d[i + 1] ^= d[i + 2];
d[i + 2] ^= d[i + 1];
d[i + 1] ^= d[i + 2];
}
}
static int i2c_write(struct i2c_adapter *adap, u8 adr,
u8 *data, u32 len)
{
struct i2c_msg msg = {.addr = adr, .flags = 0,
.buf = data, .len = len};
return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1;
}
static int i2c_read(struct i2c_adapter *adap, u8 adr,
u8 *data, u32 len)
{
struct i2c_msg msg = {.addr = adr, .flags = I2C_M_RD,
.buf = data, .len = len};
return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1;
}
static int i2cread(struct mxl *state, u8 *data, int len)
{
return i2c_read(state->base->i2c, state->base->adr, data, len);
}
static int i2cwrite(struct mxl *state, u8 *data, int len)
{
return i2c_write(state->base->i2c, state->base->adr, data, len);
}
static int send_command(struct mxl *state, u32 size, u8 *buf)
{
int stat;
mutex_lock(&state->base->i2c_lock);
stat = i2cwrite(state, buf, size);
mutex_unlock(&state->base->i2c_lock);
return stat;
}
static int write_register(struct mxl *state, u32 reg, u32 val)
{
int stat;
u8 data[MXL_HYDRA_REG_WRITE_LEN] = {
MXL_HYDRA_PLID_REG_WRITE, 0x08,
BYTE0(reg), BYTE1(reg), BYTE2(reg), BYTE3(reg),
BYTE0(val), BYTE1(val), BYTE2(val), BYTE3(val),
};
mutex_lock(&state->base->i2c_lock);
stat = i2cwrite(state, data, sizeof(data));
mutex_unlock(&state->base->i2c_lock);
if (stat)
dev_err(&state->base->i2c->dev,"i2c write error\n");
return stat;
}
static int write_register_block(struct mxl *state, u32 reg, u32 size, u8 *data)
{
int stat;
u8 *buf = state->base->buf;
mutex_lock(&state->base->i2c_lock);
buf[0] = MXL_HYDRA_PLID_REG_WRITE;
buf[1] = size + 4;
buf[2] = GET_BYTE(reg, 0);
buf[3] = GET_BYTE(reg, 1);
buf[4] = GET_BYTE(reg, 2);
buf[5] = GET_BYTE(reg, 3);
memcpy(&buf[6], data, size);
convert_endian(MXL_ENABLE_BIG_ENDIAN, size, &buf[6]);
stat = i2cwrite(state, buf,
MXL_HYDRA_I2C_HDR_SIZE +
MXL_HYDRA_REG_SIZE_IN_BYTES + size);
mutex_unlock(&state->base->i2c_lock);
return stat;
}
static int write_firmware_block(struct mxl *state,
u32 reg, u32 size, u8 *regDataPtr)
{
int stat;
u8 *buf = state->base->buf;
mutex_lock(&state->base->i2c_lock);
buf[0] = MXL_HYDRA_PLID_REG_WRITE;
buf[1] = size + 4;
buf[2] = GET_BYTE(reg, 0);
buf[3] = GET_BYTE(reg, 1);
buf[4] = GET_BYTE(reg, 2);
buf[5] = GET_BYTE(reg, 3);
memcpy(&buf[6], regDataPtr, size);
stat = i2cwrite(state, buf,
MXL_HYDRA_I2C_HDR_SIZE +
MXL_HYDRA_REG_SIZE_IN_BYTES + size);
mutex_unlock(&state->base->i2c_lock);
if (stat)
dev_err(&state->base->i2c->dev,"fw block write failed\n");
return stat;
}
static int read_register(struct mxl *state, u32 reg, u32 *val)
{
int stat;
u8 data[MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE] = {
MXL_HYDRA_PLID_REG_READ, 0x04,
GET_BYTE(reg, 0), GET_BYTE(reg, 1),
GET_BYTE(reg, 2), GET_BYTE(reg, 3),
};
mutex_lock(&state->base->i2c_lock);
stat = i2cwrite(state, data,
MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE);
if (stat)
dev_err(&state->base->i2c->dev,"i2c read error 1\n");
if (!stat)
stat = i2cread(state, (u8 *) val, MXL_HYDRA_REG_SIZE_IN_BYTES);
mutex_unlock(&state->base->i2c_lock);
le32_to_cpus(val);
if (stat)
dev_err(&state->base->i2c->dev,"i2c read error 2\n");
return stat;
}
static int read_register_block(struct mxl *state, u32 reg, u32 size, u8 *data)
{
int stat;
u8 *buf = state->base->buf;
mutex_lock(&state->base->i2c_lock);
buf[0] = MXL_HYDRA_PLID_REG_READ;
buf[1] = size + 4;
buf[2] = GET_BYTE(reg, 0);
buf[3] = GET_BYTE(reg, 1);
buf[4] = GET_BYTE(reg, 2);
buf[5] = GET_BYTE(reg, 3);
stat = i2cwrite(state, buf,
MXL_HYDRA_I2C_HDR_SIZE + MXL_HYDRA_REG_SIZE_IN_BYTES);
if (!stat) {
stat = i2cread(state, data, size);
convert_endian(MXL_ENABLE_BIG_ENDIAN, size, data);
}
mutex_unlock(&state->base->i2c_lock);
return stat;
}
static int read_by_mnemonic(struct mxl *state,
u32 reg, u8 lsbloc, u8 numofbits, u32 *val)
{
u32 data = 0, mask = 0;
int stat;
stat = read_register(state, reg, &data);
if (stat)
return stat;
mask = MXL_GET_REG_MASK_32(lsbloc, numofbits);
data &= mask;
data >>= lsbloc;
*val = data;
return 0;
}
static int update_by_mnemonic(struct mxl *state,
u32 reg, u8 lsbloc, u8 numofbits, u32 val)
{
u32 data, mask;
int stat;
stat = read_register(state, reg, &data);
if (stat)
return stat;
mask = MXL_GET_REG_MASK_32(lsbloc, numofbits);
data = (data & ~mask) | ((val << lsbloc) & mask);
stat = write_register(state, reg, data);
return stat;
}
static void extract_from_mnemonic(u32 regAddr, u8 lsbPos, u8 width,
u32 *toAddr, u8 *toLsbPos, u8 *toWidth)
{
if (toAddr)
*toAddr = regAddr;
if (toLsbPos)
*toLsbPos = lsbPos;
if (toWidth)
*toWidth = width;
}
static int firmware_is_alive(struct mxl *state)
{
u32 hb0, hb1;
if (read_register(state, HYDRA_HEAR_BEAT, &hb0))
return 0;
msleep(20);
if (read_register(state, HYDRA_HEAR_BEAT, &hb1))
return 0;
if (hb1 == hb0)
return 0;
return 1;
}
static int init(struct dvb_frontend *fe)
{
return 0;
}
static void release(struct dvb_frontend *fe)
{
struct mxl *state = fe->demodulator_priv;
state->base->count--;
if (state->base->count == 0) {
list_del(&state->base->mxllist);
kfree(state->base);
}
kfree(state);
}
static enum dvbfe_algo get_algo(struct dvb_frontend *fe)
{
return DVBFE_ALGO_HW;
}
static int CfgDemodAbortTune(struct mxl *state)
{
MXL_HYDRA_DEMOD_ABORT_TUNE_T abortTuneCmd;
u8 cmdSize = sizeof(abortTuneCmd);
u8 cmdBuff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
abortTuneCmd.demodId = state->demod;
BUILD_HYDRA_CMD(MXL_HYDRA_ABORT_TUNE_CMD, MXL_CMD_WRITE, cmdSize, &abortTuneCmd, cmdBuff);
return send_command(state, cmdSize + MXL_HYDRA_CMD_HEADER_SIZE, &cmdBuff[0]);
}
static int send_master_cmd(struct dvb_frontend *fe,
struct dvb_diseqc_master_cmd *cmd)
{
struct mxl *state = fe->demodulator_priv;
MXL_HYDRA_DISEQC_TX_MSG_T diseqcMsgPtr;
u8 cmdSize = sizeof(MXL_HYDRA_DISEQC_TX_MSG_T);
u8 cmdBuff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
int i = 0,ret = 0;
diseqcMsgPtr.diseqcId = state->rf_in;
diseqcMsgPtr.nbyte = cmd->msg_len;
diseqcMsgPtr.toneBurst = MXL_HYDRA_DISEQC_TONE_NONE;
for( i =0;i < cmd->msg_len;i++)
diseqcMsgPtr.bufMsg[i] = cmd->msg[i];
BUILD_HYDRA_CMD(MXL_HYDRA_DISEQC_MSG_CMD, MXL_CMD_WRITE, cmdSize, &diseqcMsgPtr, cmdBuff);
mutex_lock(&state->base->status_lock);
ret=send_command(state, cmdSize + MXL_HYDRA_CMD_HEADER_SIZE, &cmdBuff[0]);
mutex_unlock(&state->base->status_lock);
msleep(100);
return ret;
}
static int send_burst(struct dvb_frontend *fe,
enum fe_sec_mini_cmd burst)
{
struct mxl *state = fe->demodulator_priv;
MXL_HYDRA_DISEQC_TX_MSG_T diseqcMsgPtr;
u8 cmdSize = sizeof(MXL_HYDRA_DISEQC_TX_MSG_T);
u8 cmdBuff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
int i = 0,ret = 0;
diseqcMsgPtr.diseqcId = state->rf_in;
diseqcMsgPtr.nbyte = 0;
diseqcMsgPtr.toneBurst = burst == SEC_MINI_B ? MXL_HYDRA_DISEQC_TONE_SB : MXL_HYDRA_DISEQC_TONE_SA;
BUILD_HYDRA_CMD(MXL_HYDRA_DISEQC_MSG_CMD, MXL_CMD_WRITE, cmdSize, &diseqcMsgPtr, cmdBuff);
mutex_lock(&state->base->status_lock);
ret=send_command(state, cmdSize + MXL_HYDRA_CMD_HEADER_SIZE, &cmdBuff[0]);
mutex_unlock(&state->base->status_lock);
return ret;
}
static int set_parameters(struct dvb_frontend *fe)
{
struct mxl *state = fe->demodulator_priv;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
int ret;
MXL_HYDRA_DEMOD_PARAM_T demodChanCfg;
u8 cmdSize = sizeof(demodChanCfg);
u8 cmdBuff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
//MXL_HYDRA_DEMOD_ID_E demodId = state->demod;
#if 0
MXL_REG_FIELD_T xpt_enable_dss_input[MXL_HYDRA_DEMOD_MAX] = {
{XPT_INP_MODE_DSS0}, {XPT_INP_MODE_DSS1},
{XPT_INP_MODE_DSS2}, {XPT_INP_MODE_DSS3},
{XPT_INP_MODE_DSS4}, {XPT_INP_MODE_DSS5},
{XPT_INP_MODE_DSS6}, {XPT_INP_MODE_DSS7} };
#endif
if (p->frequency < 950000 || p->frequency > 2150000)
return -EINVAL;
if (p->symbol_rate < 1000000 || p->symbol_rate > 45000000)
return -EINVAL;
//CfgDemodAbortTune(state);
switch (p->delivery_system) {
case SYS_DSS:
demodChanCfg.standard = MXL_HYDRA_DSS;
break;
case SYS_DVBS:
demodChanCfg.standard = MXL_HYDRA_DVBS;
demodChanCfg.rollOff = MXL_HYDRA_ROLLOFF_AUTO;
demodChanCfg.modulationScheme = MXL_HYDRA_MOD_QPSK;
break;
case SYS_DVBS2:
demodChanCfg.standard = MXL_HYDRA_DVBS2;
demodChanCfg.rollOff = MXL_HYDRA_ROLLOFF_AUTO;
demodChanCfg.modulationScheme = MXL_HYDRA_MOD_AUTO;
demodChanCfg.pilots = MXL_HYDRA_PILOTS_AUTO;
break;
default:
return -EINVAL;
}
demodChanCfg.tunerIndex = state->rf_in;
demodChanCfg.demodIndex = state->demod;
demodChanCfg.frequencyInHz = p->frequency * 1000;
demodChanCfg.symbolRateInHz = p->symbol_rate;
demodChanCfg.maxCarrierOffsetInMHz = 10;
demodChanCfg.spectrumInversion = MXL_HYDRA_SPECTRUM_AUTO;
demodChanCfg.fecCodeRate = MXL_HYDRA_FEC_AUTO;
#if 0
if (p->delivery_system == SYS_DSS)
update_by_mnemonic(state,
xpt_enable_dss_input[demodId].regAddr,
xpt_enable_dss_input[demodId].lsbPos,
xpt_enable_dss_input[demodId].numOfBits,
MXL_TRUE);
else
update_by_mnemonic(state,
xpt_enable_dss_input[demodId].regAddr,
xpt_enable_dss_input[demodId].lsbPos,
xpt_enable_dss_input[demodId].numOfBits,
MXL_FALSE);
#endif
BUILD_HYDRA_CMD(MXL_HYDRA_DEMOD_SET_PARAM_CMD, MXL_CMD_WRITE,
cmdSize, &demodChanCfg, cmdBuff);
mutex_lock(&state->base->status_lock);
ret = send_command(state, cmdSize + MXL_HYDRA_CMD_HEADER_SIZE, &cmdBuff[0]);
mutex_unlock(&state->base->status_lock);
return ret;
}
static int read_status(struct dvb_frontend *fe, enum fe_status *status)
{
struct mxl *state = fe->demodulator_priv;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
int stat;
u32 reg[8];
*status = FE_HAS_SIGNAL;
/* Read RF level */
mutex_lock(&state->base->status_lock);
HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
stat = read_register(state, (HYDRA_DMD_STATUS_INPUT_POWER_ADDR +
HYDRA_DMD_STATUS_OFFSET(state->demod)),
reg);
HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
mutex_unlock(&state->base->status_lock);
p->strength.len = 2;
p->strength.stat[0].scale = FE_SCALE_DECIBEL;
p->strength.stat[0].svalue = (s16)reg[0] * 10;
p->strength.stat[1].scale = FE_SCALE_RELATIVE;
p->strength.stat[1].uvalue = (100 + (s16)reg[0]/100) * 656;
/* Read demod lock status */
mutex_lock(&state->base->status_lock);
HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
stat = read_register(state, (HYDRA_DMD_LOCK_STATUS_ADDR_OFFSET +
HYDRA_DMD_STATUS_OFFSET(state->demod)),
reg);
HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
mutex_unlock(&state->base->status_lock);
if (reg[0] == 1)
*status |= FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
else
{
p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
return 0;
}
/* Read SNR */
mutex_lock(&state->base->status_lock);
HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
stat = read_register(state, (HYDRA_DMD_SNR_ADDR_OFFSET +
HYDRA_DMD_STATUS_OFFSET(state->demod)),
reg);
HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
mutex_unlock(&state->base->status_lock);
p->cnr.len = 2;
p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
p->cnr.stat[0].svalue = (s16)reg[0] * 10;
p->cnr.stat[1].scale = FE_SCALE_RELATIVE;
p->cnr.stat[1].uvalue = reg[0] * 33;
if (p->cnr.stat[1].uvalue > 0xffff)
p->cnr.stat[1].uvalue = 0xffff;
/* Read BER */
mutex_lock(&state->base->status_lock);
HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
stat = read_register_block(state,
(HYDRA_DMD_DVBS_1ST_CORR_RS_ERRORS_ADDR_OFFSET +
HYDRA_DMD_STATUS_OFFSET(state->demod)),
(4 * sizeof(u32)),
(u8 *) reg);
HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
switch (p->delivery_system) {
case SYS_DSS:
case SYS_DVBS:
p->pre_bit_error.len = 1;
p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
p->pre_bit_error.stat[0].uvalue = reg[2];
p->pre_bit_count.len = 1;
p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
p->pre_bit_count.stat[0].uvalue = reg[3];
dev_dbg(&state->base->i2c->dev,"pre_bit_error=%u pre_bit_count=%u\n", p->pre_bit_error.stat[0].uvalue, p->pre_bit_count.stat[0].uvalue);
break;
default:
break;
}
stat = read_register_block(state,
(HYDRA_DMD_DVBS2_CRC_ERRORS_ADDR_OFFSET +
HYDRA_DMD_STATUS_OFFSET(state->demod)),
(7 * sizeof(u32)),
(u8 *) reg);
mutex_unlock(&state->base->status_lock);
switch (p->delivery_system) {
case SYS_DSS:
case SYS_DVBS:
p->post_bit_error.len = 1;
p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
p->post_bit_error.stat[0].uvalue = reg[5];
p->post_bit_count.len = 1;
p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
p->post_bit_count.stat[0].uvalue = reg[6];
break;
case SYS_DVBS2:
p->post_bit_error.len = 1;
p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
p->post_bit_error.stat[0].uvalue = reg[1];
p->post_bit_count.len = 1;
p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
p->post_bit_count.stat[0].uvalue = reg[2];
break;
default:
break;
}
dev_dbg(&state->base->i2c->dev,"post_bit_error=%u post_bit_count=%u\n", p->post_bit_error.stat[0].uvalue, p->post_bit_count.stat[0].uvalue);
return 0;
}
static int read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
int i;
for (i=0; i < p->strength.len; i++) {
if (p->strength.stat[i].scale == FE_SCALE_RELATIVE)
*strength = (u16)p->strength.stat[i].uvalue;
else if (p->strength.stat[i].scale == FE_SCALE_DECIBEL)
*strength = ((100000 + (s32)p->strength.stat[i].svalue)/1000) * 656;
}
return 0;
}
static int read_snr(struct dvb_frontend *fe, u16 *snr)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
int i;
*snr = 0;
for (i=0; i < p->cnr.len; i++)
if (p->cnr.stat[i].scale == FE_SCALE_RELATIVE)
*snr = (u16)p->cnr.stat[i].uvalue;
return 0;
}
static int read_ber(struct dvb_frontend *fe, u32 *ber)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
if ( p->post_bit_error.stat[0].scale == FE_SCALE_COUNTER &&
p->post_bit_count.stat[0].scale == FE_SCALE_COUNTER )
*ber = (u32)p->post_bit_count.stat[0].uvalue ? (u32)p->post_bit_error.stat[0].uvalue / (u32)p->post_bit_count.stat[0].uvalue : 0;
return 0;
}
static int read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
*ucblocks = 0;
return 0;
}
static int tune(struct dvb_frontend *fe, bool re_tune,
unsigned int mode_flags,
unsigned int *delay, enum fe_status *status)
{
//struct mxl *state = fe->demodulator_priv;
int r = 0;
*delay = HZ / 2;
if (re_tune) {
r = set_parameters(fe);
if (r)
return r;
}
r = read_status(fe, status);
if (r)
return r;
if (*status & FE_HAS_LOCK)
return 0;
return 0;
}
static int sleep(struct dvb_frontend *fe)
{
return 0;
}
static enum fe_code_rate conv_fec(MXL_HYDRA_FEC_E fec)
{
enum fe_code_rate fec2fec[11] = {
FEC_NONE, FEC_1_2, FEC_3_5, FEC_2_3,
FEC_3_4, FEC_4_5, FEC_5_6, FEC_6_7,
FEC_7_8, FEC_8_9, FEC_9_10
};
if (fec > MXL_HYDRA_FEC_9_10)
return FEC_NONE;
return fec2fec[fec];
}
static int get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *p)
{
struct mxl *state = fe->demodulator_priv;
u32 regData[MXL_DEMOD_CHAN_PARAMS_BUFF_SIZE];
u32 freq;
int stat;
mutex_lock(&state->base->status_lock);
HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
stat = read_register_block(state,
(HYDRA_DMD_STANDARD_ADDR_OFFSET +
HYDRA_DMD_STATUS_OFFSET(state->demod)),
(MXL_DEMOD_CHAN_PARAMS_BUFF_SIZE * 4), // 25 * 4 bytes
(u8 *) &regData[0]);
// read demod channel parameters
stat = read_register_block(state,
(HYDRA_DMD_STATUS_CENTER_FREQ_IN_KHZ_ADDR +
HYDRA_DMD_STATUS_OFFSET(state->demod)),
(4), // 4 bytes
(u8 *) &freq);
HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
mutex_unlock(&state->base->status_lock);
p->symbol_rate = regData[DMD_SYMBOL_RATE_ADDR];
p->frequency = freq;
//p->delivery_system = (MXL_HYDRA_BCAST_STD_E )regData[DMD_STANDARD_ADDR];
//p->inversion = (MXL_HYDRA_SPECTRUM_E )regData[DMD_SPECTRUM_INVERSION_ADDR];
//freqSearchRangeKHz = (regData[DMD_FREQ_SEARCH_RANGE_IN_KHZ_ADDR]);
p->fec_inner = conv_fec(regData[DMD_FEC_CODE_RATE_ADDR]);
switch (p->delivery_system) {
case SYS_DSS:
break;
case SYS_DVBS2:
switch ((MXL_HYDRA_PILOTS_E ) regData[DMD_DVBS2_PILOT_ON_OFF_ADDR]) {
case MXL_HYDRA_PILOTS_OFF:
p->pilot = PILOT_OFF;
break;
case MXL_HYDRA_PILOTS_ON:
p->pilot = PILOT_ON;
break;
default:
break;
}
case SYS_DVBS:
switch ((MXL_HYDRA_MODULATION_E) regData[DMD_MODULATION_SCHEME_ADDR]) {
case MXL_HYDRA_MOD_QPSK:
p->modulation = QPSK;
break;
case MXL_HYDRA_MOD_8PSK:
p->modulation = PSK_8;
break;
default:
break;
}
switch ((MXL_HYDRA_ROLLOFF_E) regData[DMD_SPECTRUM_ROLL_OFF_ADDR]) {
case MXL_HYDRA_ROLLOFF_0_20:
p->rolloff = ROLLOFF_20;
break;
case MXL_HYDRA_ROLLOFF_0_35:
p->rolloff = ROLLOFF_35;
break;
case MXL_HYDRA_ROLLOFF_0_25:
p->rolloff = ROLLOFF_25;
break;
default:
break;
}
break;
default:
return -EINVAL;
}
return 0;
}
static int set_input_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone, int rf_in)
{
struct mxl *state = fe->demodulator_priv;
u8 buf[14] = {
MXL_HYDRA_PLID_CMD_WRITE,
12, 8,
MXL_HYDRA_DISEQC_CONT_TONE_CFG, 0, 0,
rf_in, 0, 0, 0,
(tone == SEC_TONE_ON) ? 1 : 0, 0, 0, 0
};
return send_command(state, sizeof(buf), buf);
}
static int set_voltage(struct dvb_frontend *fe, enum fe_sec_voltage voltage)
{
struct mxl *state = fe->demodulator_priv;
struct i2c_adapter *i2c = state->base->i2c;
struct mxl58x_cfg *cfg = state->base->cfg;
if (mode)
cfg->set_voltage(i2c, voltage, state->rf_in);
else {
if (voltage == SEC_VOLTAGE_18)
state->rf_in &= ~2;
else
state->rf_in |= 2;
}
return 0;
}
static int set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
{
struct mxl *state = fe->demodulator_priv;
if (mode)
set_input_tone(fe, tone, state->rf_in);
else {
if (tone == SEC_TONE_ON)
state->rf_in &= ~1;
else
state->rf_in |= 1;
}
return 0;
}
static void spi_read(struct dvb_frontend *fe, struct ecp3_info *ecp3inf)
{
struct mxl *state = fe->demodulator_priv;
struct i2c_adapter *adapter = state->base->i2c;
if (state->base->read_properties)
state->base->read_properties(adapter,ecp3inf->reg, &(ecp3inf->data));
return ;
}
static void spi_write(struct dvb_frontend *fe,struct ecp3_info *ecp3inf)
{
struct mxl *state = fe->demodulator_priv;
struct i2c_adapter *adapter = state->base->i2c;
if (state->base->write_properties)
state->base->write_properties(adapter,ecp3inf->reg, ecp3inf->data);
return ;
}
static void eeprom_read(struct dvb_frontend *fe, struct eeprom_info *eepinf)
{
struct mxl *state = fe->demodulator_priv;
struct i2c_adapter *adapter = state->base->i2c;
if (state->base->read_eeprom)
state->base->read_eeprom(adapter,eepinf->reg, &(eepinf->data));
return ;
}
static void eeprom_write(struct dvb_frontend *fe,struct eeprom_info *eepinf)
{
struct mxl *state = fe->demodulator_priv;
struct i2c_adapter *adapter = state->base->i2c;
if (state->base->write_eeprom)
state->base->write_eeprom(adapter,eepinf->reg, eepinf->data);
return ;
}
static int read_temp(struct dvb_frontend *fe, s16 *temp)
{
struct mxl *state = fe->demodulator_priv;
int status;
u32 regData = 0;
mutex_lock(&state->base->status_lock);
status = read_register(state, HYDRA_TEMPARATURE, &regData);
mutex_unlock(&state->base->status_lock);
*temp=status ? 0: regData;
return 0;
}
static struct dvb_frontend_ops mxl_ops = {
.delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
.info = {
.name = "MXL58X",
.frequency_min_hz = 300 * MHz,
.frequency_max_hz = 2350 * MHz,
.symbol_rate_min = 1000000,
.symbol_rate_max = 45000000,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_AUTO |
FE_CAN_QPSK |
FE_CAN_2G_MODULATION
},
.init = init,
.release = release,
.get_frontend_algo = get_algo,
.tune = tune,
.read_status = read_status,
.sleep = sleep,
.read_snr = read_snr,
.read_ber = read_ber,
.read_signal_strength = read_signal_strength,
.read_ucblocks = read_ucblocks,
.get_frontend = get_frontend,
.diseqc_send_master_cmd = send_master_cmd,
.diseqc_send_burst = send_burst,
.set_tone = set_tone,
.set_voltage = set_voltage,
.spi_read = spi_read,
.spi_write = spi_write,
.eeprom_read = eeprom_read,
.eeprom_write = eeprom_write,
.read_temp = read_temp,
};
static struct mxl_base *match_base(struct i2c_adapter *i2c, u8 adr)
{
struct mxl_base *p;
list_for_each_entry(p, &mxllist, mxllist)
if (p->i2c == i2c && p->adr == adr)
return p;
return NULL;
}
static void cfg_dev_xtal(struct mxl *state, u32 freq, u32 cap, u32 enable)
{
SET_REG_FIELD_DATA(AFE_REG_D2A_XTAL_EN_CLKOUT_1P8, enable);
if (freq == 24000000)
write_register(state, HYDRA_CRYSTAL_SETTING, 0);
else
write_register(state, HYDRA_CRYSTAL_SETTING, 1);
write_register(state, HYDRA_CRYSTAL_CAP, cap);
}
static u32 get_big_endian(u8 numOfBits, const u8 buf[])
{
u32 retValue = 0;
switch (numOfBits) {
case 24:
retValue = (((u32) buf[0]) << 16) |
(((u32) buf[1]) << 8) | buf[2];
break;
case 32:
retValue = (((u32) buf[0]) << 24) |
(((u32) buf[1]) << 16) |
(((u32) buf[2]) << 8) | buf[3];
break;
default:
break;
}
return retValue;
}
static void flip_data_in_dword(u32 size, u8 *d)
{
u32 i;
u8 t;
for (i = 0; i < size; i += 4) {
t = d[i + 3]; d[i + 3] = d[i]; d[i] = t;
t = d[i + 2]; d[i + 2] = d[i + 1]; d[i + 1] = t;
}
}
static int write_fw_segment(struct mxl *state,
u32 MemAddr, u32 totalSize, u8 *dataPtr)
{
int status;
u32 dataCount = 0;
u32 size = 0;
u32 origSize = 0;
u8 *wBufPtr = NULL;
u32 blockSize = MXL_HYDRA_OEM_MAX_BLOCK_WRITE_LENGTH;
u8 wMsgBuffer[MXL_HYDRA_OEM_MAX_BLOCK_WRITE_LENGTH];
//dev_warn(&state->base->i2c->dev,"seg %u\n", totalSize);
do {
size = origSize = (((u32)(dataCount + blockSize)) > totalSize) ?
(totalSize - dataCount) : blockSize;
wBufPtr = dataPtr;
if (origSize & 3) {
size = (origSize + 4) & ~3;
wBufPtr = &wMsgBuffer[0];
memset((void *)wBufPtr + origSize,
0x00, size - origSize);
memcpy((void *)wBufPtr, (void *)dataPtr, origSize);
}
flip_data_in_dword(size, wBufPtr);
status = write_firmware_block(state, MemAddr, size, wBufPtr);
if (status)
return status;
dataCount += size;
MemAddr += size;
dataPtr += size;
} while (dataCount < totalSize);
return status;
}
static int do_firmware_download(struct mxl *state,
u32 mbinBufferSize,
u8 *mbinBufferPtr)
{
int status;
u32 index = 0;
u32 segLength = 0;
u32 segAddress = 0;
MBIN_FILE_T *mbinPtr = (MBIN_FILE_T *)mbinBufferPtr;
MBIN_SEGMENT_T *segmentPtr;
if (mbinPtr->header.id != MBIN_FILE_HEADER_ID) {
dev_err(&state->base->i2c->dev,"%s: Invalid file header ID (%c)\n",
__func__, mbinPtr->header.id);
return -EINVAL;
}
status = write_register(state, FW_DL_SIGN_ADDR, 0);
if (status)
return status;
segmentPtr = (MBIN_SEGMENT_T *) (&mbinPtr->data[0]);
for (index = 0; index < mbinPtr->header.numSegments; index++) {
if (segmentPtr->header.id != MBIN_SEGMENT_HEADER_ID) {
dev_err(&state->base->i2c->dev,"%s: Invalid segment header ID (%c)\n",
__func__, segmentPtr->header.id);
return -EINVAL;
}
segLength = get_big_endian(24, &(segmentPtr->header.len24[0]));
segAddress = get_big_endian(32, &(segmentPtr->header.address[0]));
status = -1;
if (((segAddress & 0x90760000) != 0x90760000) &&
((segAddress & 0x90740000) != 0x90740000))
status = write_fw_segment(state, segAddress,
segLength, (u8 *) segmentPtr->data);
if (status)
return status;
segmentPtr = (MBIN_SEGMENT_T *)
&(segmentPtr->data[((segLength + 3) / 4) * 4]);
}
return status;
}
static int firmware_download(struct mxl *state, u32 mbinBufferSize,
u8 *mbinBufferPtr)
{
int status;
u32 regData = 0;
MXL_HYDRA_SKU_COMMAND_T devSkuCfg;
u8 cmdSize = sizeof(MXL_HYDRA_SKU_COMMAND_T);
u8 cmdBuff[sizeof(MXL_HYDRA_SKU_COMMAND_T) + 6];
/* put CPU into reset */
status = SET_REG_FIELD_DATA(PRCM_PRCM_CPU_SOFT_RST_N, 0);
if (status)
return status;
usleep_range(1000, 2000);
/* Reset TX FIFO's, BBAND, XBAR */
status = write_register(state, HYDRA_RESET_TRANSPORT_FIFO_REG,
HYDRA_RESET_TRANSPORT_FIFO_DATA);
if (status)
return status;
status = write_register(state, HYDRA_RESET_BBAND_REG,
HYDRA_RESET_BBAND_DATA);
if (status)
return status;
status = write_register(state, HYDRA_RESET_XBAR_REG,
HYDRA_RESET_XBAR_DATA);
if (status)
return status;
// lja
/* Disable clock to Baseband, Wideband, SerDes, Alias ext & Transport modules */
status = write_register(state, HYDRA_MODULES_CLK_2_REG, HYDRA_DISABLE_CLK_2);
if (status)
return status;
//write_register(state, HYDRA_MODULES_CLK_2_REG, 0x0000000b);
/* Clear Software & Host interrupt status - (Clear on read) */
status = read_register(state, HYDRA_PRCM_ROOT_CLK_REG, &regData);
if (status)
return status;
status = do_firmware_download(state, mbinBufferSize, mbinBufferPtr);
if (status)
return status;
if (state->base->type == MXL_HYDRA_DEVICE_568) {
msleep(10);
// bring XCPU out of reset
status = write_register(state, 0x90720000, 1);
if (status)
return status;
msleep(500);
// Enable XCPU UART message processing in MCPU
status = write_register(state, 0x9076B510, 1);
if (status)
return status;
} else {
/* Bring CPU out of reset */
status = SET_REG_FIELD_DATA(PRCM_PRCM_CPU_SOFT_RST_N, 1);
if (status)
return status;
/* Wait until FW boots */
msleep(150);
}
// lja
// Initilize XPT XBAR
status = write_register(state, XPT_DMD0_BASEADDR, 0x76543210);
if (status)
return status;
if (!firmware_is_alive(state))
return -1;
dev_info(&state->base->i2c->dev,"Hydra FW alive\n");
/* sometimes register values are wrong shortly after first heart beats */
msleep(50);
devSkuCfg.skuType = state->base->type;
BUILD_HYDRA_CMD(MXL_HYDRA_DEV_CFG_SKU_CMD, MXL_CMD_WRITE,
cmdSize, &devSkuCfg, cmdBuff);
status = send_command(state, cmdSize + MXL_HYDRA_CMD_HEADER_SIZE, &cmdBuff[0]);
if (status)
return status;
status = GET_REG_FIELD_DATA(PAD_MUX_BOND_OPTION, &regData);
if (status)
return status;
dev_info(&state->base->i2c->dev,"chipID=%08x\n", regData);
status = GET_REG_FIELD_DATA(PRCM_AFE_CHIP_MMSK_VER, &regData);
if (status)
return status;
dev_info(&state->base->i2c->dev,"chipVer=%08x\n", regData);
status = read_register(state, HYDRA_FIRMWARE_VERSION, &regData);
if (status)
return status;
dev_info(&state->base->i2c->dev,"FWVer=%08x\n", regData);
return status;
}
static int cfg_ts_pad_mux(struct mxl *state, MXL_BOOL_E enableSerialTS)
{
int status = 0;
u32 padMuxValue = 0;
if (enableSerialTS == MXL_TRUE)
padMuxValue = 0;
else
padMuxValue = 3;
switch (state->base->type) {
case MXL_HYDRA_DEVICE_561:
case MXL_HYDRA_DEVICE_581:
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_14_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_15_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_16_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_17_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_18_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_19_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_20_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_21_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_22_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_23_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_24_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_25_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_26_PINMUX_SEL, padMuxValue);
break;
case MXL_HYDRA_DEVICE_584:
default:
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_09_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_10_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_11_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_12_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_13_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_14_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_15_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_16_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_17_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_18_PINMUX_SEL, padMuxValue);
status |= SET_REG_FIELD_DATA(PAD_MUX_DIGIO_19_PINMUX_SEL, padMuxValue);
break;
}
return status;
}
static int config_ts(struct mxl *state, MXL_HYDRA_DEMOD_ID_E demodId, MXL_HYDRA_MPEGOUT_PARAM_T *mpegOutParamPtr)
{
int status = 0;
u32 ncoCountMin = 0;
u32 clkType = 0;
static const MXL_REG_FIELD_T xpt_sync_polarity[MXL_HYDRA_DEMOD_MAX] = {
{XPT_SYNC_POLARITY0}, {XPT_SYNC_POLARITY1},
{XPT_SYNC_POLARITY2}, {XPT_SYNC_POLARITY3},
{XPT_SYNC_POLARITY4}, {XPT_SYNC_POLARITY5},
{XPT_SYNC_POLARITY6}, {XPT_SYNC_POLARITY7} };
static const MXL_REG_FIELD_T xpt_clock_polarity[MXL_HYDRA_DEMOD_MAX] = {
{XPT_CLOCK_POLARITY0}, {XPT_CLOCK_POLARITY1},
{XPT_CLOCK_POLARITY2}, {XPT_CLOCK_POLARITY3},
{XPT_CLOCK_POLARITY4}, {XPT_CLOCK_POLARITY5},
{XPT_CLOCK_POLARITY6}, {XPT_CLOCK_POLARITY7} };
static const MXL_REG_FIELD_T xpt_valid_polarity[MXL_HYDRA_DEMOD_MAX] = {
{XPT_VALID_POLARITY0}, {XPT_VALID_POLARITY1},
{XPT_VALID_POLARITY2}, {XPT_VALID_POLARITY3},
{XPT_VALID_POLARITY4}, {XPT_VALID_POLARITY5},
{XPT_VALID_POLARITY6}, {XPT_VALID_POLARITY7} };
static const MXL_REG_FIELD_T xpt_ts_clock_phase[MXL_HYDRA_DEMOD_MAX] = {
{XPT_TS_CLK_PHASE0}, {XPT_TS_CLK_PHASE1},
{XPT_TS_CLK_PHASE2}, {XPT_TS_CLK_PHASE3},
{XPT_TS_CLK_PHASE4}, {XPT_TS_CLK_PHASE5},
{XPT_TS_CLK_PHASE6}, {XPT_TS_CLK_PHASE7} };
static const MXL_REG_FIELD_T xpt_lsb_first[MXL_HYDRA_DEMOD_MAX] = {
{XPT_LSB_FIRST0}, {XPT_LSB_FIRST1}, {XPT_LSB_FIRST2}, {XPT_LSB_FIRST3},
{XPT_LSB_FIRST4}, {XPT_LSB_FIRST5}, {XPT_LSB_FIRST6}, {XPT_LSB_FIRST7} };
static const MXL_REG_FIELD_T xpt_sync_byte[MXL_HYDRA_DEMOD_MAX] = {
{XPT_SYNC_FULL_BYTE0}, {XPT_SYNC_FULL_BYTE1},
{XPT_SYNC_FULL_BYTE2}, {XPT_SYNC_FULL_BYTE3},
{XPT_SYNC_FULL_BYTE4}, {XPT_SYNC_FULL_BYTE5},
{XPT_SYNC_FULL_BYTE6}, {XPT_SYNC_FULL_BYTE7} };
static const MXL_REG_FIELD_T xpt_enable_output[MXL_HYDRA_DEMOD_MAX] = {
{XPT_ENABLE_OUTPUT0}, {XPT_ENABLE_OUTPUT1},
{XPT_ENABLE_OUTPUT2}, {XPT_ENABLE_OUTPUT3},
{XPT_ENABLE_OUTPUT4}, {XPT_ENABLE_OUTPUT5},
{XPT_ENABLE_OUTPUT6}, {XPT_ENABLE_OUTPUT7} };
static const MXL_REG_FIELD_T xpt_enable_dvb_input[MXL_HYDRA_DEMOD_MAX] = {
{XPT_ENABLE_INPUT0}, {XPT_ENABLE_INPUT1},
{XPT_ENABLE_INPUT2}, {XPT_ENABLE_INPUT3},
{XPT_ENABLE_INPUT4}, {XPT_ENABLE_INPUT5},
{XPT_ENABLE_INPUT6}, {XPT_ENABLE_INPUT7} };
static const MXL_REG_FIELD_T xpt_err_replace_sync[MXL_HYDRA_DEMOD_MAX] = {
{XPT_ERROR_REPLACE_SYNC0}, {XPT_ERROR_REPLACE_SYNC1},
{XPT_ERROR_REPLACE_SYNC2}, {XPT_ERROR_REPLACE_SYNC3},
{XPT_ERROR_REPLACE_SYNC4}, {XPT_ERROR_REPLACE_SYNC5},
{XPT_ERROR_REPLACE_SYNC6}, {XPT_ERROR_REPLACE_SYNC7} };
static const MXL_REG_FIELD_T xpt_err_replace_valid[MXL_HYDRA_DEMOD_MAX] = {
{XPT_ERROR_REPLACE_VALID0}, {XPT_ERROR_REPLACE_VALID1},
{XPT_ERROR_REPLACE_VALID2}, {XPT_ERROR_REPLACE_VALID3},
{XPT_ERROR_REPLACE_VALID4}, {XPT_ERROR_REPLACE_VALID5},
{XPT_ERROR_REPLACE_VALID6}, {XPT_ERROR_REPLACE_VALID7} };
static const MXL_REG_FIELD_T xpt_continuous_clock[MXL_HYDRA_DEMOD_MAX] = {
{XPT_TS_CLK_OUT_EN0}, {XPT_TS_CLK_OUT_EN1},
{XPT_TS_CLK_OUT_EN2}, {XPT_TS_CLK_OUT_EN3},
{XPT_TS_CLK_OUT_EN4}, {XPT_TS_CLK_OUT_EN5},
{XPT_TS_CLK_OUT_EN6}, {XPT_TS_CLK_OUT_EN7} };
static const MXL_REG_FIELD_T mxl561_xpt_ts_sync[MXL_HYDRA_DEMOD_ID_6] = {
{PAD_MUX_DIGIO_25_PINMUX_SEL}, {PAD_MUX_DIGIO_20_PINMUX_SEL},
{PAD_MUX_DIGIO_17_PINMUX_SEL}, {PAD_MUX_DIGIO_11_PINMUX_SEL},
{PAD_MUX_DIGIO_08_PINMUX_SEL}, {PAD_MUX_DIGIO_03_PINMUX_SEL} };
static const MXL_REG_FIELD_T mxl561_xpt_ts_valid[MXL_HYDRA_DEMOD_ID_6] = {
{PAD_MUX_DIGIO_26_PINMUX_SEL}, {PAD_MUX_DIGIO_19_PINMUX_SEL},
{PAD_MUX_DIGIO_18_PINMUX_SEL}, {PAD_MUX_DIGIO_10_PINMUX_SEL},
{PAD_MUX_DIGIO_09_PINMUX_SEL}, {PAD_MUX_DIGIO_02_PINMUX_SEL} };
if (MXL_ENABLE == mpegOutParamPtr->enable) {
cfg_ts_pad_mux(state, MXL_TRUE);
SET_REG_FIELD_DATA(XPT_ENABLE_PARALLEL_OUTPUT, MXL_FALSE);
}
ncoCountMin = (u32)(MXL_HYDRA_NCO_CLK/mpegOutParamPtr->maxMpegClkRate);
SET_REG_FIELD_DATA(XPT_NCO_COUNT_MIN, ncoCountMin);
if (mpegOutParamPtr->mpegClkType == MXL_HYDRA_MPEG_CLK_CONTINUOUS)
clkType = 1;
if (mpegOutParamPtr->mpegMode < MXL_HYDRA_MPEG_MODE_PARALLEL) {
status |= update_by_mnemonic(state,
xpt_continuous_clock[demodId].regAddr,
xpt_continuous_clock[demodId].lsbPos,
xpt_continuous_clock[demodId].numOfBits,
clkType);
} else
SET_REG_FIELD_DATA(XPT_TS_CLK_OUT_EN_PARALLEL, clkType);
status |= update_by_mnemonic(state,
xpt_sync_polarity[demodId].regAddr,
xpt_sync_polarity[demodId].lsbPos,
xpt_sync_polarity[demodId].numOfBits,
mpegOutParamPtr->mpegSyncPol);
status |= update_by_mnemonic(state,
xpt_valid_polarity[demodId].regAddr,
xpt_valid_polarity[demodId].lsbPos,
xpt_valid_polarity[demodId].numOfBits,
mpegOutParamPtr->mpegValidPol);
status |= update_by_mnemonic(state,
xpt_clock_polarity[demodId].regAddr,
xpt_clock_polarity[demodId].lsbPos,
xpt_clock_polarity[demodId].numOfBits,
mpegOutParamPtr->mpegClkPol);
status |= update_by_mnemonic(state,
xpt_sync_byte[demodId].regAddr,
xpt_sync_byte[demodId].lsbPos,
xpt_sync_byte[demodId].numOfBits,
mpegOutParamPtr->mpegSyncPulseWidth);
status |= update_by_mnemonic(state,
xpt_ts_clock_phase[demodId].regAddr,
xpt_ts_clock_phase[demodId].lsbPos,
xpt_ts_clock_phase[demodId].numOfBits,
mpegOutParamPtr->mpegClkPhase);
status |= update_by_mnemonic(state,
xpt_lsb_first[demodId].regAddr,
xpt_lsb_first[demodId].lsbPos,
xpt_lsb_first[demodId].numOfBits,
mpegOutParamPtr->lsbOrMsbFirst);
switch (mpegOutParamPtr->mpegErrorIndication) {
case MXL_HYDRA_MPEG_ERR_REPLACE_SYNC:
status |= update_by_mnemonic(state,
xpt_err_replace_sync[demodId].regAddr,
xpt_err_replace_sync[demodId].lsbPos,
xpt_err_replace_sync[demodId].numOfBits,
MXL_TRUE);
status |= update_by_mnemonic(state,
xpt_err_replace_valid[demodId].regAddr,
xpt_err_replace_valid[demodId].lsbPos,
xpt_err_replace_valid[demodId].numOfBits,
MXL_FALSE);
break;
case MXL_HYDRA_MPEG_ERR_REPLACE_VALID:
status |= update_by_mnemonic(state,
xpt_err_replace_sync[demodId].regAddr,
xpt_err_replace_sync[demodId].lsbPos,
xpt_err_replace_sync[demodId].numOfBits,
MXL_FALSE);
status |= update_by_mnemonic(state,
xpt_err_replace_valid[demodId].regAddr,
xpt_err_replace_valid[demodId].lsbPos,
xpt_err_replace_valid[demodId].numOfBits,
MXL_TRUE);
break;
case MXL_HYDRA_MPEG_ERR_INDICATION_DISABLED:
default:
status |= update_by_mnemonic(state,
xpt_err_replace_sync[demodId].regAddr,
xpt_err_replace_sync[demodId].lsbPos,
xpt_err_replace_sync[demodId].numOfBits,
MXL_FALSE);
status |= update_by_mnemonic(state,
xpt_err_replace_valid[demodId].regAddr,
xpt_err_replace_valid[demodId].lsbPos,
xpt_err_replace_valid[demodId].numOfBits,
MXL_FALSE);
break;
}
if (mpegOutParamPtr->mpegMode != MXL_HYDRA_MPEG_MODE_PARALLEL) {
status |= update_by_mnemonic(state,
xpt_enable_output[demodId].regAddr,
xpt_enable_output[demodId].lsbPos,
xpt_enable_output[demodId].numOfBits,
mpegOutParamPtr->enable);
status |=
update_by_mnemonic(state,
xpt_enable_dvb_input[demodId].regAddr,
xpt_enable_dvb_input[demodId].lsbPos,
xpt_enable_dvb_input[demodId].numOfBits,
mpegOutParamPtr->enable);
}
return status;
}
static int config_mux(struct mxl *state)
{
SET_REG_FIELD_DATA(XPT_ENABLE_OUTPUT0, 0);
SET_REG_FIELD_DATA(XPT_ENABLE_OUTPUT1, 0);
SET_REG_FIELD_DATA(XPT_ENABLE_OUTPUT2, 0);
SET_REG_FIELD_DATA(XPT_ENABLE_OUTPUT3, 0);
SET_REG_FIELD_DATA(XPT_ENABLE_OUTPUT4, 0);
SET_REG_FIELD_DATA(XPT_ENABLE_OUTPUT5, 0);
SET_REG_FIELD_DATA(XPT_ENABLE_OUTPUT6, 0);
SET_REG_FIELD_DATA(XPT_ENABLE_OUTPUT7, 0);
SET_REG_FIELD_DATA(XPT_STREAM_MUXMODE0, 1);
SET_REG_FIELD_DATA(XPT_STREAM_MUXMODE1, 1);
return 0;
}
static int config_dis(struct mxl *state, u32 id)
{
MXL_HYDRA_DISEQC_ID_E diseqcId = id;
MXL_HYDRA_DISEQC_OPMODE_E opMode = MXL_HYDRA_DISEQC_TONE_MODE; //lja MXL_HYDRA_DISEQC_ENVELOPE_MODE;
MXL_HYDRA_DISEQC_VER_E version = MXL_HYDRA_DISEQC_1_X;
MXL_HYDRA_DISEQC_CARRIER_FREQ_E carrierFreqInHz = MXL_HYDRA_DISEQC_CARRIER_FREQ_22KHZ;
MXL58x_DSQ_OP_MODE_T diseqcMsg;
u8 cmdSize = sizeof(diseqcMsg);
u8 cmdBuff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
diseqcMsg.diseqcId = diseqcId;
diseqcMsg.opMode = opMode;
diseqcMsg.version = version;
diseqcMsg.centerFreq = carrierFreqInHz;
BUILD_HYDRA_CMD(MXL_HYDRA_DISEQC_CFG_MSG_CMD,
MXL_CMD_WRITE, cmdSize, &diseqcMsg, cmdBuff);
return send_command(state, cmdSize + MXL_HYDRA_CMD_HEADER_SIZE, &cmdBuff[0]);
}
static int load_fw(struct mxl *state)
{
struct mxl58x_cfg *cfg = state->base->cfg;
int stat = 0;
u8 *buf;
const struct firmware *fw;
dev_warn(&state->base->i2c->dev,"loading firmware, please wait...\n");
stat = request_firmware(&fw, MXL58X_DEFAULT_FIRMWARE,
state->base->i2c->dev.parent);
if (stat)
return stat;
stat = firmware_download(state, fw->size, fw->data);
release_firmware(fw);
if (stat)
dev_err(&state->base->i2c->dev,"error loading firmware\n");
return stat;
}
static int init_multisw(struct mxl *state)
{
struct dvb_frontend *fe = &state->fe;
struct i2c_adapter *i2c = state->base->i2c;
struct mxl58x_cfg *cfg = state->base->cfg;
if (mode)
return 0;
cfg->set_voltage(i2c, SEC_VOLTAGE_13, 3);
cfg->set_voltage(i2c, SEC_VOLTAGE_13, 2);
cfg->set_voltage(i2c, SEC_VOLTAGE_18, 1);
cfg->set_voltage(i2c, SEC_VOLTAGE_18, 0);
set_input_tone(fe, SEC_TONE_OFF, 3);
set_input_tone(fe, SEC_TONE_ON, 2);
set_input_tone(fe, SEC_TONE_OFF, 1);
set_input_tone(fe, SEC_TONE_ON, 0);
return 0;
}
static int probe(struct mxl *state)
{
struct mxl58x_cfg *cfg = state->base->cfg;
u32 chipver;
int fw, status, j;
MXL_HYDRA_MPEGOUT_PARAM_T mpegInterfaceCfg;
fw = firmware_is_alive(state);
if (!fw) {
// lja
SET_REG_FIELD_DATA(PRCM_AFE_REG_CLOCK_ENABLE, 1);
//write_register(state, HYDRA_MODULES_CLK_1_REG, 0x0000020b);
SET_REG_FIELD_DATA(PRCM_PRCM_AFE_REG_SOFT_RST_N, 1);
status = GET_REG_FIELD_DATA(PRCM_CHIP_VERSION, &chipver);
if (status)
state->base->chipversion = 0;
else
state->base->chipversion = (chipver == 2) ? 2 : 1;
dev_info(&state->base->i2c->dev, "Hydra chip version %u\n", state->base->chipversion);
cfg_dev_xtal(state, cfg->clk, cfg->cap, 0);
status = load_fw(state);
if (status)
return status;
config_dis(state, 0);
config_dis(state, 1);
config_dis(state, 2);
config_dis(state, 3);
#if 0
config_mux(state);
mpegInterfaceCfg.enable = MXL_ENABLE;
mpegInterfaceCfg.lsbOrMsbFirst = MXL_HYDRA_MPEG_SERIAL_MSB_1ST;
/* supports only (0-104&139)MHz */
mpegInterfaceCfg.maxMpegClkRate = 139;
mpegInterfaceCfg.mpegClkPhase = MXL_HYDRA_MPEG_CLK_PHASE_SHIFT_180_DEG; //MXL_HYDRA_MPEG_CLK_PHASE_SHIFT_0_DEG;
mpegInterfaceCfg.mpegClkPol = MXL_HYDRA_MPEG_CLK_IN_PHASE;
/* MXL_HYDRA_MPEG_CLK_GAPPED; */
mpegInterfaceCfg.mpegClkType = MXL_HYDRA_MPEG_CLK_CONTINUOUS;
mpegInterfaceCfg.mpegErrorIndication =
MXL_HYDRA_MPEG_ERR_INDICATION_DISABLED;
mpegInterfaceCfg.mpegMode = MXL_HYDRA_MPEG_MODE_SERIAL_3_WIRE;
mpegInterfaceCfg.mpegSyncPol = MXL_HYDRA_MPEG_ACTIVE_HIGH;
mpegInterfaceCfg.mpegSyncPulseWidth = MXL_HYDRA_MPEG_SYNC_WIDTH_BIT;
mpegInterfaceCfg.mpegValidPol = MXL_HYDRA_MPEG_ACTIVE_HIGH;
for (j = 0; j < 8; j++) {
status = config_ts(state, (MXL_HYDRA_DEMOD_ID_E) j,
&mpegInterfaceCfg);
if (status)
return status;
}
#endif
// lja
write_register(state, 0x90700008, 0x00000005);
write_register(state, 0x90000170, 0);
write_register(state, 0x90000174, 0);
write_register(state, 0x90700044, 0x00030000);
write_register(state, 0x90700238, 0x03030303);
write_register(state, 0x9070023C, 0x00030303);
write_register(state, 0x907001D4, 0x000000ff);
write_register(state, 0x90700010, 0x0000ff00);
write_register(state, 0x90700014, 0x000000ff);
write_register(state, 0x90700018, 0x22222222);
write_register(state, 0x9070000C, 0x000000ff);
write_register(state, 0x90700000, 0x000000ff);
}
return 0;
}
struct dvb_frontend *mxl58x_attach(struct i2c_adapter *i2c,
struct mxl58x_cfg *cfg,
u32 demod)
{
struct mxl *state;
struct mxl_base *base;
state = kzalloc(sizeof(struct mxl), GFP_KERNEL);
if (!state)
return NULL;
state->demod = demod;
state->rf_in = 0;
if(mode)
{
if((demod==0)||(demod==1))
state->rf_in = 3;
if((demod==2)||(demod==3))
state->rf_in = 2;
if((demod ==4)||(demod ==5))
state->rf_in = 1;
if((demod ==6)||(demod ==7))
state->rf_in = 0;
if (rfsource > 0 && rfsource < 5)
state->rf_in = 4 - rfsource;
if (mode==2)
state->rf_in = 0;
}
state->fe.ops = mxl_ops;
state->fe.demodulator_priv = state;
base = match_base(i2c, cfg->adr);
if (base) {
base->count++;
state->base = base;
} else {
base = kzalloc(sizeof(struct mxl_base), GFP_KERNEL);
if (!base)
goto fail;
base->i2c = i2c;
base->cfg = cfg;
base->adr = cfg->adr;
base->type = cfg->type;
base->count = 1;
base->write_properties = cfg->write_properties;
base->read_properties = cfg->read_properties;
base->write_eeprom = cfg->write_eeprom;
base->read_eeprom = cfg->read_eeprom;
mutex_init(&base->i2c_lock);
mutex_init(&base->status_lock);
state->base = base;
if (probe(state) < 0) {
kfree(base);
goto fail;
}
init_multisw(state);
list_add(&base->mxllist, &mxllist);
}
return &state->fe;
fail:
kfree(state);
return NULL;
}
EXPORT_SYMBOL_GPL(mxl58x_attach);
MODULE_DESCRIPTION("MXL58X driver");
MODULE_AUTHOR("Ralph Metzler");
MODULE_LICENSE("GPL");