Files
IronOS/source/Core/BSP/Miniware/BSP.cpp
Ben V. Brown c308fe8cc2 Pinecil v2 tune via PID (#1827)
* Start PWM after adc irq fully done

* Filter len 4

* Use comparitor 2 on timer for wrap around

* Update IRQ.cpp

* Tip measurements are uint16_t

Update BSP.cpp

Update BSP.cpp

* WiP PID

move pid tuning to config

Update PIDThread.cpp

* Handle PWM Timer gitchy comparitor

* Tuning

* Dampen with Kd

* Cleaning up

* Use TemperatureType_t for getTipTemp()

* Add small rolling average to user GUI temp to reduce flicker

* Trigger PID when adc is skipped (will use old values)
2023-10-21 08:21:08 +11:00

421 lines
13 KiB
C++

// BSP mapping functions
#include "BSP.h"
#include "BootLogo.h"
#include "I2C_Wrapper.hpp"
#include "Pins.h"
#include "Setup.h"
#include "TipThermoModel.h"
#include "USBPD.h"
#include "configuration.h"
#include "history.hpp"
#include "main.hpp"
#include <IRQ.h>
volatile uint16_t PWMSafetyTimer = 0;
volatile uint8_t pendingPWM = 0;
const uint16_t powerPWM = 255;
static const uint8_t holdoffTicks = 14; // delay of 8 ms
static const uint8_t tempMeasureTicks = 14;
uint16_t totalPWM; // htimADC.Init.Period, the full PWM cycle
static bool fastPWM;
static bool infastPWM;
void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); }
#ifdef TEMP_NTC
// Lookup table for the NTC
// Stored as ADCReading,Temp in degC
static const uint16_t NTCHandleLookup[] = {
// ADC Reading , Temp in C
29189, 0, //
28832, 2, //
28450, 4, //
28042, 6, //
27607, 8, //
27146, 10, //
26660, 12, //
26147, 14, //
25610, 16, //
25049, 18, //
24465, 20, //
23859, 22, //
23234, 24, //
22591, 26, //
21933, 28, //
21261, 30, //
20579, 32, //
19888, 34, //
19192, 36, //
18493, 38, //
17793, 40, //
17096, 42, //
16404, 44, //
16061, 45, //
};
#endif
uint16_t getHandleTemperature(uint8_t sample) {
int32_t result = getADCHandleTemp(sample);
#ifdef TEMP_NTC
// TS80P uses 100k NTC resistors instead
// NTCG104EF104FT1X from TDK
// For now not doing interpolation
for (uint32_t i = 0; i < (sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t))); i++) {
if (result > NTCHandleLookup[(i * 2) + 0]) {
return NTCHandleLookup[(i * 2) + 1] * 10;
}
}
return 45 * 10;
#endif
#ifdef TEMP_TMP36
// We return the current handle temperature in X10 C
// TMP36 in handle, 0.5V offset and then 10mV per deg C (0.75V @ 25C for
// example) STM32 = 4096 count @ 3.3V input -> But We oversample by 32/(2^2) =
// 8 times oversampling Therefore 32768 is the 3.3V input, so 0.1007080078125
// mV per count So we need to subtract an offset of 0.5V to center on 0C
// (4964.8 counts)
//
result -= 4965; // remove 0.5V offset
// 10mV per C
// 99.29 counts per Deg C above 0C. Tends to read a tad over across all of my sample units
result *= 100;
result /= 994;
return result;
#endif
return 0;
}
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
// ADC maximum is 32767 == 3.3V at input == 28.05V at VIN
// Therefore we can divide down from there
// Multiplying ADC max by 4 for additional calibration options,
// ideal term is 467
uint32_t res = getADCVin(sample);
res *= 4;
res /= divisor;
return res;
}
static void switchToFastPWM(void) {
// 10Hz
infastPWM = true;
totalPWM = powerPWM + tempMeasureTicks + holdoffTicks;
htimADC.Instance->ARR = totalPWM;
htimADC.Instance->CCR1 = powerPWM + holdoffTicks;
htimADC.Instance->PSC = 2690;
}
static void switchToSlowPWM(void) {
// 5Hz
infastPWM = false;
totalPWM = powerPWM + tempMeasureTicks / 2 + holdoffTicks / 2;
htimADC.Instance->ARR = totalPWM;
htimADC.Instance->CCR1 = powerPWM + holdoffTicks / 2;
htimADC.Instance->PSC = 2690 * 2;
}
void setTipPWM(const uint8_t pulse, const bool shouldUseFastModePWM) {
PWMSafetyTimer = 20; // This is decremented in the handler for PWM so that the tip pwm is
// disabled if the PID task is not scheduled often enough.
fastPWM = shouldUseFastModePWM;
pendingPWM = pulse;
}
// These are called by the HAL after the corresponding events from the system
// timers.
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
// Period has elapsed
if (htim->Instance == ADC_CONTROL_TIMER) {
// we want to turn on the output again
PWMSafetyTimer--;
// We decrement this safety value so that lockups in the
// scheduler will not cause the PWM to become locked in an
// active driving state.
// While we could assume this could never happen, its a small price for
// increased safety
#ifdef TIP_HAS_DIRECT_PWM
htimADC.Instance->CCR4 = powerPWM;
if (pendingPWM && PWMSafetyTimer) {
htimTip.Instance->CCR1 = pendingPWM;
HAL_TIM_PWM_Start(&htimTip, PWM_Out_CHANNEL);
} else {
HAL_TIM_PWM_Stop(&htimTip, PWM_Out_CHANNEL);
}
#else
htimADC.Instance->CCR4 = pendingPWM;
if (htimADC.Instance->CCR4 && PWMSafetyTimer) {
HAL_TIM_PWM_Start(&htimTip, PWM_Out_CHANNEL);
} else {
HAL_TIM_PWM_Stop(&htimTip, PWM_Out_CHANNEL);
}
#endif
if (fastPWM != infastPWM) {
if (fastPWM) {
switchToFastPWM();
} else {
switchToSlowPWM();
}
}
} else if (htim->Instance == TIM1) {
// STM uses this for internal functions as a counter for timeouts
HAL_IncTick();
}
}
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) {
// This was a when the PWM for the output has timed out
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4) {
HAL_TIM_PWM_Stop(&htimTip, PWM_Out_CHANNEL);
}
}
void unstick_I2C() {
#ifndef I2C_SOFT_BUS_1
GPIO_InitTypeDef GPIO_InitStruct;
int timeout = 100;
int timeout_cnt = 0;
// 1. Clear PE bit.
hi2c1.Instance->CR1 &= ~(0x0001);
/**I2C1 GPIO Configuration
PB6 ------> I2C1_SCL
PB7 ------> I2C1_SDA
*/
// 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR).
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = SCL_Pin;
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
GPIO_InitStruct.Pin = SDA_Pin;
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) {
// Move clock to release I2C
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET);
asm("nop");
asm("nop");
asm("nop");
asm("nop");
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
timeout_cnt++;
if (timeout_cnt > timeout)
return;
}
// 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = SCL_Pin;
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
GPIO_InitStruct.Pin = SDA_Pin;
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
// 13. Set SWRST bit in I2Cx_CR1 register.
hi2c1.Instance->CR1 |= 0x8000;
asm("nop");
// 14. Clear SWRST bit in I2Cx_CR1 register.
hi2c1.Instance->CR1 &= ~0x8000;
asm("nop");
// 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register
hi2c1.Instance->CR1 |= 0x0001;
// Call initialization function.
HAL_I2C_Init(&hi2c1);
#endif
}
uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; }
uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; }
void BSPInit(void) { switchToFastPWM(); }
void reboot() { NVIC_SystemReset(); }
void delay_ms(uint16_t count) { HAL_Delay(count); }
uint8_t lastTipResistance = 0; // default to unknown
const uint8_t numTipResistanceReadings = 3;
uint32_t tipResistanceReadings[3] = {0, 0, 0};
uint8_t tipResistanceReadingSlot = 0;
bool isTipDisconnected() {
uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5;
uint32_t tipTemp = TipThermoModel::getTipInC();
return tipTemp > tipDisconnectedThres;
}
void setStatusLED(const enum StatusLED state) {}
void setBuzzer(bool on) {}
#ifdef TIP_RESISTANCE_SENSE_Pin
// We want to calculate lastTipResistance
// If tip is connected, and the tip is cold and the tip is not being heated
// We can use the GPIO to inject a small current into the tip and measure this
// The gpio is 100k -> diode -> tip -> gnd
// Source is 3.3V-0.5V
// Which is around 0.028mA this will induce:
// 6 ohm tip -> 3.24mV (Real world ~= 3320)
// 8 ohm tip -> 4.32mV (Real world ~= 4500)
// Which is definitely measureable
// Taking shortcuts here as we know we only really have to pick apart 6 and 8 ohm tips
// These are reported as 60 and 75 respectively
void performTipResistanceSampleReading() {
// 0 = read then turn on pullup, 1 = read then turn off pullup, 2 = read again
tipResistanceReadings[tipResistanceReadingSlot] = TipThermoModel::convertTipRawADCTouV(getTipRawTemp(1));
HAL_GPIO_WritePin(TIP_RESISTANCE_SENSE_GPIO_Port, TIP_RESISTANCE_SENSE_Pin, (tipResistanceReadingSlot == 0) ? GPIO_PIN_SET : GPIO_PIN_RESET);
tipResistanceReadingSlot++;
}
bool tipShorted = false;
void FinishMeasureTipResistance() {
// Otherwise we now have the 4 samples;
// _^_ order, 2 delta's, combine these
int32_t calculatedSkew = tipResistanceReadings[0] - tipResistanceReadings[2]; // If positive tip is cooling
calculatedSkew /= 2; // divide by two to get offset per time constant
int32_t reading = (((tipResistanceReadings[1] - tipResistanceReadings[0]) + calculatedSkew) // jump 1 - skew
+ // +
((tipResistanceReadings[1] - tipResistanceReadings[2]) + calculatedSkew) // jump 2 - skew
) //
/ 2; // Take average
// // As we are only detecting two resistances; we can split the difference for now
uint8_t newRes = 0;
if (reading > 1200) {
// return; // Change nothing as probably disconnected tip
tipResistanceReadingSlot = lastTipResistance = 0;
return;
} else if (reading < 200) {
tipShorted = true;
} else if (reading < 800) {
newRes = 62;
} else {
newRes = 80;
}
lastTipResistance = newRes;
}
volatile bool tipMeasurementOccuring = true;
volatile TickType_t nextTipMeasurement = 100;
void performTipMeasurementStep() {
// Wait 200ms for settle time
if (xTaskGetTickCount() < (nextTipMeasurement)) {
return;
}
nextTipMeasurement = xTaskGetTickCount() + (TICKS_100MS * 5);
if (tipResistanceReadingSlot < numTipResistanceReadings) {
performTipResistanceSampleReading();
return;
}
// We are sensing the resistance
FinishMeasureTipResistance();
tipMeasurementOccuring = false;
}
#endif
uint8_t preStartChecks() {
#ifdef TIP_RESISTANCE_SENSE_Pin
performTipMeasurementStep();
if (preStartChecksDone() != 1) {
return 0;
}
#endif
#ifdef HAS_SPLIT_POWER_PATH
// We want to enable the power path that has the highest voltage
// Nominally one will be ~=0 and one will be high. Unless you jamb both in, then both _may_ be high, or device may be dead
{
uint16_t dc = getRawDCVin();
uint16_t pd = getRawPDVin();
if (dc > pd) {
HAL_GPIO_WritePin(DC_SELECT_GPIO_Port, DC_SELECT_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(PD_SELECT_GPIO_Port, PD_SELECT_Pin, GPIO_PIN_RESET);
} else {
HAL_GPIO_WritePin(PD_SELECT_GPIO_Port, PD_SELECT_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(DC_SELECT_GPIO_Port, DC_SELECT_Pin, GPIO_PIN_RESET);
}
}
#endif
#ifdef POW_PD
// If we are in the middle of negotiating PD, wait until timeout
// Before turning on the heater
if (!USBPowerDelivery::negotiationComplete()) {
return 0;
}
#endif
return 1;
}
uint64_t getDeviceID() {
//
return HAL_GetUIDw0() | ((uint64_t)HAL_GetUIDw1() << 32);
}
uint8_t preStartChecksDone() {
#ifdef TIP_RESISTANCE_SENSE_Pin
return (lastTipResistance == 0 || tipResistanceReadingSlot < numTipResistanceReadings || tipMeasurementOccuring || tipShorted) ? 0 : 1;
#else
return 1;
#endif
}
uint8_t getTipResistanceX10() {
#ifdef TIP_RESISTANCE_SENSE_Pin
// Return tip resistance in x10 ohms
// We can measure this using the op-amp
return lastTipResistance;
#else
return TIP_RESISTANCE;
#endif
}
#ifdef TIP_RESISTANCE_SENSE_Pin
bool isTipShorted() { return tipShorted; }
#else
bool isTipShorted() { return false; }
#endif
uint16_t getTipThermalMass() {
#ifdef TIP_RESISTANCE_SENSE_Pin
if (lastTipResistance >= 80) {
return TIP_THERMAL_MASS;
}
return 45;
#else
return TIP_THERMAL_MASS;
#endif
}
uint16_t getTipInertia() {
#ifdef TIP_RESISTANCE_SENSE_Pin
if (lastTipResistance >= 80) {
return TIP_THERMAL_MASS;
}
return 10;
#else
return TIP_THERMAL_MASS;
#endif
}
void showBootLogo(void) { BootLogo::handleShowingLogo((uint8_t *)FLASH_LOGOADDR); }