mirror of
https://github.com/Ralim/IronOS.git
synced 2025-07-23 04:13:01 +02:00
* Minor doc updates * pydoc * Draft tip selection menu * Start linking in manual tip resistance * Enable on Pinecilv1 / TS10x * Fixup drawing tip type * Update Settings.cpp * Rename JBC type * Add translations * Handle one tip type * Refactor header includes * Fixup translation_IT.json * Fixing up includes * Format * Apply suggestions from code review Co-authored-by: discip <53649486+discip@users.noreply.github.com> * Update Documentation/Hardware.md Co-authored-by: discip <53649486+discip@users.noreply.github.com> --------- Co-authored-by: = <=> Co-authored-by: discip <53649486+discip@users.noreply.github.com>
427 lines
13 KiB
C++
427 lines
13 KiB
C++
// BSP mapping functions
|
|
|
|
#include "BSP.h"
|
|
#include "BootLogo.h"
|
|
#include "I2C_Wrapper.hpp"
|
|
#include "Pins.h"
|
|
#include "Settings.h"
|
|
#include "Setup.h"
|
|
#include "TipThermoModel.h"
|
|
#include "USBPD.h"
|
|
#include "configuration.h"
|
|
#include "history.hpp"
|
|
#include "main.hpp"
|
|
#include <IRQ.h>
|
|
|
|
volatile uint16_t PWMSafetyTimer = 0;
|
|
volatile uint8_t pendingPWM = 0;
|
|
|
|
const uint16_t powerPWM = 255;
|
|
static const uint8_t holdoffTicks = 14; // delay of 8 ms
|
|
static const uint8_t tempMeasureTicks = 14;
|
|
|
|
uint16_t totalPWM; // htimADC.Init.Period, the full PWM cycle
|
|
|
|
static bool fastPWM;
|
|
static bool infastPWM;
|
|
|
|
void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); }
|
|
#ifdef TEMP_NTC
|
|
// Lookup table for the NTC
|
|
// Stored as ADCReading,Temp in degC
|
|
static const uint16_t NTCHandleLookup[] = {
|
|
// ADC Reading , Temp in C
|
|
29189, 0, //
|
|
28832, 2, //
|
|
28450, 4, //
|
|
28042, 6, //
|
|
27607, 8, //
|
|
27146, 10, //
|
|
26660, 12, //
|
|
26147, 14, //
|
|
25610, 16, //
|
|
25049, 18, //
|
|
24465, 20, //
|
|
23859, 22, //
|
|
23234, 24, //
|
|
22591, 26, //
|
|
21933, 28, //
|
|
21261, 30, //
|
|
20579, 32, //
|
|
19888, 34, //
|
|
19192, 36, //
|
|
18493, 38, //
|
|
17793, 40, //
|
|
17096, 42, //
|
|
16404, 44, //
|
|
16061, 45, //
|
|
};
|
|
#endif
|
|
|
|
uint16_t getHandleTemperature(uint8_t sample) {
|
|
int32_t result = getADCHandleTemp(sample);
|
|
#ifdef TEMP_NTC
|
|
// TS80P uses 100k NTC resistors instead
|
|
// NTCG104EF104FT1X from TDK
|
|
// For now not doing interpolation
|
|
for (uint32_t i = 0; i < (sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t))); i++) {
|
|
if (result > NTCHandleLookup[(i * 2) + 0]) {
|
|
return NTCHandleLookup[(i * 2) + 1] * 10;
|
|
}
|
|
}
|
|
return 45 * 10;
|
|
#endif
|
|
#ifdef TEMP_TMP36
|
|
// We return the current handle temperature in X10 C
|
|
// TMP36 in handle, 0.5V offset and then 10mV per deg C (0.75V @ 25C for
|
|
// example) STM32 = 4096 count @ 3.3V input -> But We oversample by 32/(2^2) =
|
|
// 8 times oversampling Therefore 32768 is the 3.3V input, so 0.1007080078125
|
|
// mV per count So we need to subtract an offset of 0.5V to center on 0C
|
|
// (4964.8 counts)
|
|
//
|
|
result -= 4965; // remove 0.5V offset
|
|
// 10mV per C
|
|
// 99.29 counts per Deg C above 0C. Tends to read a tad over across all of my sample units
|
|
result *= 100;
|
|
result /= 994;
|
|
return result;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
|
|
// ADC maximum is 32767 == 3.3V at input == 28.05V at VIN
|
|
// Therefore we can divide down from there
|
|
// Multiplying ADC max by 4 for additional calibration options,
|
|
// ideal term is 467
|
|
uint32_t res = getADCVin(sample);
|
|
res *= 4;
|
|
res /= divisor;
|
|
return res;
|
|
}
|
|
|
|
static void switchToFastPWM(void) {
|
|
// 10Hz
|
|
infastPWM = true;
|
|
totalPWM = powerPWM + tempMeasureTicks + holdoffTicks;
|
|
htimADC.Instance->ARR = totalPWM;
|
|
htimADC.Instance->CCR1 = powerPWM + holdoffTicks;
|
|
htimADC.Instance->PSC = 2690;
|
|
}
|
|
|
|
static void switchToSlowPWM(void) {
|
|
// 5Hz
|
|
infastPWM = false;
|
|
totalPWM = powerPWM + tempMeasureTicks / 2 + holdoffTicks / 2;
|
|
htimADC.Instance->ARR = totalPWM;
|
|
htimADC.Instance->CCR1 = powerPWM + holdoffTicks / 2;
|
|
htimADC.Instance->PSC = 2690 * 2;
|
|
}
|
|
|
|
void setTipPWM(const uint8_t pulse, const bool shouldUseFastModePWM) {
|
|
PWMSafetyTimer = 20; // This is decremented in the handler for PWM so that the tip pwm is
|
|
// disabled if the PID task is not scheduled often enough.
|
|
fastPWM = shouldUseFastModePWM;
|
|
pendingPWM = pulse;
|
|
}
|
|
// These are called by the HAL after the corresponding events from the system
|
|
// timers.
|
|
|
|
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
|
|
// Period has elapsed
|
|
if (htim->Instance == ADC_CONTROL_TIMER) {
|
|
// we want to turn on the output again
|
|
PWMSafetyTimer--;
|
|
// We decrement this safety value so that lockups in the
|
|
// scheduler will not cause the PWM to become locked in an
|
|
// active driving state.
|
|
// While we could assume this could never happen, its a small price for
|
|
// increased safety
|
|
#ifdef TIP_HAS_DIRECT_PWM
|
|
htimADC.Instance->CCR4 = powerPWM;
|
|
if (pendingPWM && PWMSafetyTimer) {
|
|
htimTip.Instance->CCR1 = pendingPWM;
|
|
HAL_TIM_PWM_Start(&htimTip, PWM_Out_CHANNEL);
|
|
} else {
|
|
HAL_TIM_PWM_Stop(&htimTip, PWM_Out_CHANNEL);
|
|
}
|
|
#else
|
|
htimADC.Instance->CCR4 = pendingPWM;
|
|
if (htimADC.Instance->CCR4 && PWMSafetyTimer) {
|
|
HAL_TIM_PWM_Start(&htimTip, PWM_Out_CHANNEL);
|
|
} else {
|
|
HAL_TIM_PWM_Stop(&htimTip, PWM_Out_CHANNEL);
|
|
}
|
|
#endif
|
|
if (fastPWM != infastPWM) {
|
|
if (fastPWM) {
|
|
switchToFastPWM();
|
|
} else {
|
|
switchToSlowPWM();
|
|
}
|
|
}
|
|
|
|
} else if (htim->Instance == TIM1) {
|
|
// STM uses this for internal functions as a counter for timeouts
|
|
HAL_IncTick();
|
|
}
|
|
}
|
|
|
|
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) {
|
|
// This was a when the PWM for the output has timed out
|
|
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4) {
|
|
HAL_TIM_PWM_Stop(&htimTip, PWM_Out_CHANNEL);
|
|
}
|
|
}
|
|
void unstick_I2C() {
|
|
#ifndef I2C_SOFT_BUS_1
|
|
GPIO_InitTypeDef GPIO_InitStruct;
|
|
int timeout = 100;
|
|
int timeout_cnt = 0;
|
|
|
|
// 1. Clear PE bit.
|
|
hi2c1.Instance->CR1 &= ~(0x0001);
|
|
/**I2C1 GPIO Configuration
|
|
PB6 ------> I2C1_SCL
|
|
PB7 ------> I2C1_SDA
|
|
*/
|
|
// 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR).
|
|
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
|
|
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
|
|
|
GPIO_InitStruct.Pin = SCL_Pin;
|
|
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
|
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
|
|
|
GPIO_InitStruct.Pin = SDA_Pin;
|
|
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
|
|
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
|
|
|
|
while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) {
|
|
// Move clock to release I2C
|
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET);
|
|
asm("nop");
|
|
asm("nop");
|
|
asm("nop");
|
|
asm("nop");
|
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
|
|
|
timeout_cnt++;
|
|
if (timeout_cnt > timeout) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.
|
|
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
|
|
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
|
|
|
GPIO_InitStruct.Pin = SCL_Pin;
|
|
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
|
|
|
|
GPIO_InitStruct.Pin = SDA_Pin;
|
|
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
|
|
|
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
|
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
|
|
|
|
// 13. Set SWRST bit in I2Cx_CR1 register.
|
|
hi2c1.Instance->CR1 |= 0x8000;
|
|
|
|
asm("nop");
|
|
|
|
// 14. Clear SWRST bit in I2Cx_CR1 register.
|
|
hi2c1.Instance->CR1 &= ~0x8000;
|
|
|
|
asm("nop");
|
|
|
|
// 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register
|
|
hi2c1.Instance->CR1 |= 0x0001;
|
|
|
|
// Call initialization function.
|
|
HAL_I2C_Init(&hi2c1);
|
|
#endif
|
|
}
|
|
|
|
uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; }
|
|
uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; }
|
|
|
|
void BSPInit(void) { switchToFastPWM(); }
|
|
|
|
void reboot() { NVIC_SystemReset(); }
|
|
|
|
void delay_ms(uint16_t count) { HAL_Delay(count); }
|
|
|
|
uint8_t lastTipResistance = 0; // default to unknown
|
|
const uint8_t numTipResistanceReadings = 3;
|
|
uint32_t tipResistanceReadings[3] = {0, 0, 0};
|
|
uint8_t tipResistanceReadingSlot = 0;
|
|
bool isTipDisconnected() {
|
|
|
|
uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5;
|
|
uint32_t tipTemp = TipThermoModel::getTipInC();
|
|
return tipTemp > tipDisconnectedThres;
|
|
}
|
|
|
|
void setStatusLED(const enum StatusLED state) {}
|
|
void setBuzzer(bool on) {}
|
|
#ifdef TIP_RESISTANCE_SENSE_Pin
|
|
// We want to calculate lastTipResistance
|
|
// If tip is connected, and the tip is cold and the tip is not being heated
|
|
// We can use the GPIO to inject a small current into the tip and measure this
|
|
// The gpio is 100k -> diode -> tip -> gnd
|
|
// Source is 3.3V-0.5V
|
|
// Which is around 0.028mA this will induce:
|
|
// 6 ohm tip -> 3.24mV (Real world ~= 3320)
|
|
// 8 ohm tip -> 4.32mV (Real world ~= 4500)
|
|
// Which is definitely measureable
|
|
// Taking shortcuts here as we know we only really have to pick apart 6 and 8 ohm tips
|
|
// These are reported as 60 and 75 respectively
|
|
void performTipResistanceSampleReading() {
|
|
// 0 = read then turn on pullup, 1 = read then turn off pullup, 2 = read again
|
|
tipResistanceReadings[tipResistanceReadingSlot] = TipThermoModel::convertTipRawADCTouV(getTipRawTemp(1));
|
|
|
|
HAL_GPIO_WritePin(TIP_RESISTANCE_SENSE_GPIO_Port, TIP_RESISTANCE_SENSE_Pin, (tipResistanceReadingSlot == 0) ? GPIO_PIN_SET : GPIO_PIN_RESET);
|
|
|
|
tipResistanceReadingSlot++;
|
|
}
|
|
bool tipShorted = false;
|
|
void FinishMeasureTipResistance() {
|
|
|
|
// Otherwise we now have the 4 samples;
|
|
// _^_ order, 2 delta's, combine these
|
|
|
|
int32_t calculatedSkew = tipResistanceReadings[0] - tipResistanceReadings[2]; // If positive tip is cooling
|
|
calculatedSkew /= 2; // divide by two to get offset per time constant
|
|
|
|
int32_t reading = (((tipResistanceReadings[1] - tipResistanceReadings[0]) + calculatedSkew) // jump 1 - skew
|
|
+ // +
|
|
((tipResistanceReadings[1] - tipResistanceReadings[2]) + calculatedSkew) // jump 2 - skew
|
|
) //
|
|
/ 2; // Take average
|
|
// // As we are only detecting two resistances; we can split the difference for now
|
|
uint8_t newRes = 0;
|
|
if (reading > 1200) {
|
|
// return; // Change nothing as probably disconnected tip
|
|
tipResistanceReadingSlot = lastTipResistance = 0;
|
|
return;
|
|
} else if (reading < 200) {
|
|
tipShorted = true;
|
|
} else if (reading < 520) {
|
|
newRes = 40;
|
|
} else if (reading < 800) {
|
|
newRes = 62;
|
|
} else {
|
|
newRes = 80;
|
|
}
|
|
lastTipResistance = newRes;
|
|
}
|
|
volatile bool tipMeasurementOccuring = true;
|
|
volatile TickType_t nextTipMeasurement = 100;
|
|
|
|
void performTipMeasurementStep() {
|
|
|
|
// Wait 200ms for settle time
|
|
if (xTaskGetTickCount() < (nextTipMeasurement)) {
|
|
return;
|
|
}
|
|
nextTipMeasurement = xTaskGetTickCount() + (TICKS_100MS * 5);
|
|
if (tipResistanceReadingSlot < numTipResistanceReadings) {
|
|
performTipResistanceSampleReading();
|
|
return;
|
|
}
|
|
|
|
// We are sensing the resistance
|
|
FinishMeasureTipResistance();
|
|
|
|
tipMeasurementOccuring = false;
|
|
}
|
|
#endif
|
|
uint8_t preStartChecks() {
|
|
#ifdef TIP_RESISTANCE_SENSE_Pin
|
|
performTipMeasurementStep();
|
|
if (preStartChecksDone() != 1) {
|
|
return 0;
|
|
}
|
|
#endif
|
|
#ifdef HAS_SPLIT_POWER_PATH
|
|
|
|
// We want to enable the power path that has the highest voltage
|
|
// Nominally one will be ~=0 and one will be high. Unless you jamb both in, then both _may_ be high, or device may be dead
|
|
{
|
|
uint16_t dc = getRawDCVin();
|
|
uint16_t pd = getRawPDVin();
|
|
if (dc > pd) {
|
|
HAL_GPIO_WritePin(DC_SELECT_GPIO_Port, DC_SELECT_Pin, GPIO_PIN_SET);
|
|
HAL_GPIO_WritePin(PD_SELECT_GPIO_Port, PD_SELECT_Pin, GPIO_PIN_RESET);
|
|
} else {
|
|
HAL_GPIO_WritePin(PD_SELECT_GPIO_Port, PD_SELECT_Pin, GPIO_PIN_SET);
|
|
HAL_GPIO_WritePin(DC_SELECT_GPIO_Port, DC_SELECT_Pin, GPIO_PIN_RESET);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
uint64_t getDeviceID() {
|
|
//
|
|
return HAL_GetUIDw0() | ((uint64_t)HAL_GetUIDw1() << 32);
|
|
}
|
|
|
|
uint8_t preStartChecksDone() {
|
|
#ifdef TIP_RESISTANCE_SENSE_Pin
|
|
return (lastTipResistance == 0 || tipResistanceReadingSlot < numTipResistanceReadings || tipMeasurementOccuring || tipShorted) ? 0 : 1;
|
|
#else
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
uint8_t getTipResistanceX10() {
|
|
#ifdef TIP_RESISTANCE_SENSE_Pin
|
|
// Return tip resistance in x10 ohms
|
|
// We can measure this using the op-amp
|
|
uint8_t user_selected_tip = getUserSelectedTipResistance();
|
|
if (user_selected_tip == 0) {
|
|
return lastTipResistance; // Auto mode
|
|
}
|
|
return user_selected_tip;
|
|
|
|
#else
|
|
uint8_t user_selected_tip = getUserSelectedTipResistance();
|
|
if (user_selected_tip == 0) {
|
|
return TIP_RESISTANCE; // Auto mode
|
|
}
|
|
return user_selected_tip;
|
|
#endif
|
|
}
|
|
#ifdef TIP_RESISTANCE_SENSE_Pin
|
|
bool isTipShorted() { return tipShorted; }
|
|
#else
|
|
bool isTipShorted() { return false; }
|
|
#endif
|
|
uint16_t getTipThermalMass() {
|
|
#ifdef TIP_RESISTANCE_SENSE_Pin
|
|
if (lastTipResistance >= 80) {
|
|
return TIP_THERMAL_MASS;
|
|
}
|
|
return 45;
|
|
#else
|
|
return TIP_THERMAL_MASS;
|
|
#endif
|
|
}
|
|
uint16_t getTipInertia() {
|
|
#ifdef TIP_RESISTANCE_SENSE_Pin
|
|
if (lastTipResistance >= 80) {
|
|
return TIP_THERMAL_MASS;
|
|
}
|
|
return 10;
|
|
#else
|
|
return TIP_THERMAL_MASS;
|
|
#endif
|
|
}
|
|
|
|
void showBootLogo(void) { BootLogo::handleShowingLogo((uint8_t *)FLASH_LOGOADDR); }
|