// BSP mapping functions #include "BSP.h" #include "BootLogo.h" #include "I2C_Wrapper.hpp" #include "Pins.h" #include "Settings.h" #include "Setup.h" #include "TipThermoModel.h" #include "USBPD.h" #include "configuration.h" #include "history.hpp" #include "main.hpp" #include volatile uint16_t PWMSafetyTimer = 0; volatile uint8_t pendingPWM = 0; const uint16_t powerPWM = 255; static const uint8_t holdoffTicks = 14; // delay of 8 ms static const uint8_t tempMeasureTicks = 14; uint16_t totalPWM; // htimADC.Init.Period, the full PWM cycle static bool fastPWM; static bool infastPWM; void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); } #ifdef TEMP_NTC // Lookup table for the NTC // Stored as ADCReading,Temp in degC static const uint16_t NTCHandleLookup[] = { // ADC Reading , Temp in C 29189, 0, // 28832, 2, // 28450, 4, // 28042, 6, // 27607, 8, // 27146, 10, // 26660, 12, // 26147, 14, // 25610, 16, // 25049, 18, // 24465, 20, // 23859, 22, // 23234, 24, // 22591, 26, // 21933, 28, // 21261, 30, // 20579, 32, // 19888, 34, // 19192, 36, // 18493, 38, // 17793, 40, // 17096, 42, // 16404, 44, // 16061, 45, // }; #endif uint16_t getHandleTemperature(uint8_t sample) { int32_t result = getADCHandleTemp(sample); #ifdef TEMP_NTC // TS80P uses 100k NTC resistors instead // NTCG104EF104FT1X from TDK // For now not doing interpolation for (uint32_t i = 0; i < (sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t))); i++) { if (result > NTCHandleLookup[(i * 2) + 0]) { return NTCHandleLookup[(i * 2) + 1] * 10; } } return 45 * 10; #endif #ifdef TEMP_TMP36 // We return the current handle temperature in X10 C // TMP36 in handle, 0.5V offset and then 10mV per deg C (0.75V @ 25C for // example) STM32 = 4096 count @ 3.3V input -> But We oversample by 32/(2^2) = // 8 times oversampling Therefore 32768 is the 3.3V input, so 0.1007080078125 // mV per count So we need to subtract an offset of 0.5V to center on 0C // (4964.8 counts) // result -= 4965; // remove 0.5V offset // 10mV per C // 99.29 counts per Deg C above 0C. Tends to read a tad over across all of my sample units result *= 100; result /= 994; return result; #endif return 0; } uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) { // ADC maximum is 32767 == 3.3V at input == 28.05V at VIN // Therefore we can divide down from there // Multiplying ADC max by 4 for additional calibration options, // ideal term is 467 uint32_t res = getADCVin(sample); res *= 4; res /= divisor; return res; } static void switchToFastPWM(void) { // 10Hz infastPWM = true; totalPWM = powerPWM + tempMeasureTicks + holdoffTicks; htimADC.Instance->ARR = totalPWM; htimADC.Instance->CCR1 = powerPWM + holdoffTicks; htimADC.Instance->PSC = 2690; } static void switchToSlowPWM(void) { // 5Hz infastPWM = false; totalPWM = powerPWM + tempMeasureTicks / 2 + holdoffTicks / 2; htimADC.Instance->ARR = totalPWM; htimADC.Instance->CCR1 = powerPWM + holdoffTicks / 2; htimADC.Instance->PSC = 2690 * 2; } void setTipPWM(const uint8_t pulse, const bool shouldUseFastModePWM) { PWMSafetyTimer = 20; // This is decremented in the handler for PWM so that the tip pwm is // disabled if the PID task is not scheduled often enough. fastPWM = shouldUseFastModePWM; pendingPWM = pulse; } // These are called by the HAL after the corresponding events from the system // timers. void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { // Period has elapsed if (htim->Instance == ADC_CONTROL_TIMER) { // we want to turn on the output again PWMSafetyTimer--; // We decrement this safety value so that lockups in the // scheduler will not cause the PWM to become locked in an // active driving state. // While we could assume this could never happen, its a small price for // increased safety #ifdef TIP_HAS_DIRECT_PWM htimADC.Instance->CCR4 = powerPWM; if (pendingPWM && PWMSafetyTimer) { htimTip.Instance->CCR1 = pendingPWM; HAL_TIM_PWM_Start(&htimTip, PWM_Out_CHANNEL); } else { HAL_TIM_PWM_Stop(&htimTip, PWM_Out_CHANNEL); } #else htimADC.Instance->CCR4 = pendingPWM; if (htimADC.Instance->CCR4 && PWMSafetyTimer) { HAL_TIM_PWM_Start(&htimTip, PWM_Out_CHANNEL); } else { HAL_TIM_PWM_Stop(&htimTip, PWM_Out_CHANNEL); } #endif if (fastPWM != infastPWM) { if (fastPWM) { switchToFastPWM(); } else { switchToSlowPWM(); } } } else if (htim->Instance == TIM1) { // STM uses this for internal functions as a counter for timeouts HAL_IncTick(); } } void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) { // This was a when the PWM for the output has timed out if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4) { HAL_TIM_PWM_Stop(&htimTip, PWM_Out_CHANNEL); } } void unstick_I2C() { #ifndef I2C_SOFT_BUS_1 GPIO_InitTypeDef GPIO_InitStruct; int timeout = 100; int timeout_cnt = 0; // 1. Clear PE bit. hi2c1.Instance->CR1 &= ~(0x0001); /**I2C1 GPIO Configuration PB6 ------> I2C1_SCL PB7 ------> I2C1_SDA */ // 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR). GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Pin = SCL_Pin; HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); GPIO_InitStruct.Pin = SDA_Pin; HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET); while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) { // Move clock to release I2C HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET); asm("nop"); asm("nop"); asm("nop"); asm("nop"); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); timeout_cnt++; if (timeout_cnt > timeout) { return; } } // 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain. GPIO_InitStruct.Mode = GPIO_MODE_AF_OD; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Pin = SCL_Pin; HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct); GPIO_InitStruct.Pin = SDA_Pin; HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET); // 13. Set SWRST bit in I2Cx_CR1 register. hi2c1.Instance->CR1 |= 0x8000; asm("nop"); // 14. Clear SWRST bit in I2Cx_CR1 register. hi2c1.Instance->CR1 &= ~0x8000; asm("nop"); // 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register hi2c1.Instance->CR1 |= 0x0001; // Call initialization function. HAL_I2C_Init(&hi2c1); #endif } uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; } uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; } void BSPInit(void) { switchToFastPWM(); } void reboot() { NVIC_SystemReset(); } void delay_ms(uint16_t count) { HAL_Delay(count); } uint8_t lastTipResistance = 0; // default to unknown const uint8_t numTipResistanceReadings = 3; uint32_t tipResistanceReadings[3] = {0, 0, 0}; uint8_t tipResistanceReadingSlot = 0; bool isTipDisconnected() { uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5; uint32_t tipTemp = TipThermoModel::getTipInC(); return tipTemp > tipDisconnectedThres; } void setStatusLED(const enum StatusLED state) {} void setBuzzer(bool on) {} #ifdef TIP_RESISTANCE_SENSE_Pin // We want to calculate lastTipResistance // If tip is connected, and the tip is cold and the tip is not being heated // We can use the GPIO to inject a small current into the tip and measure this // The gpio is 100k -> diode -> tip -> gnd // Source is 3.3V-0.5V // Which is around 0.028mA this will induce: // 6 ohm tip -> 3.24mV (Real world ~= 3320) // 8 ohm tip -> 4.32mV (Real world ~= 4500) // Which is definitely measureable // Taking shortcuts here as we know we only really have to pick apart 6 and 8 ohm tips // These are reported as 60 and 75 respectively void performTipResistanceSampleReading() { // 0 = read then turn on pullup, 1 = read then turn off pullup, 2 = read again tipResistanceReadings[tipResistanceReadingSlot] = TipThermoModel::convertTipRawADCTouV(getTipRawTemp(1)); HAL_GPIO_WritePin(TIP_RESISTANCE_SENSE_GPIO_Port, TIP_RESISTANCE_SENSE_Pin, (tipResistanceReadingSlot == 0) ? GPIO_PIN_SET : GPIO_PIN_RESET); tipResistanceReadingSlot++; } bool tipShorted = false; void FinishMeasureTipResistance() { // Otherwise we now have the 4 samples; // _^_ order, 2 delta's, combine these int32_t calculatedSkew = tipResistanceReadings[0] - tipResistanceReadings[2]; // If positive tip is cooling calculatedSkew /= 2; // divide by two to get offset per time constant int32_t reading = (((tipResistanceReadings[1] - tipResistanceReadings[0]) + calculatedSkew) // jump 1 - skew + // + ((tipResistanceReadings[1] - tipResistanceReadings[2]) + calculatedSkew) // jump 2 - skew ) // / 2; // Take average // // As we are only detecting two resistances; we can split the difference for now uint8_t newRes = 0; if (reading > 1200) { // return; // Change nothing as probably disconnected tip tipResistanceReadingSlot = lastTipResistance = 0; return; } else if (reading < 200) { tipShorted = true; } else if (reading < 520) { newRes = 40; } else if (reading < 800) { newRes = 62; } else { newRes = 80; } lastTipResistance = newRes; } volatile bool tipMeasurementOccuring = true; volatile TickType_t nextTipMeasurement = 100; void performTipMeasurementStep() { // Wait 200ms for settle time if (xTaskGetTickCount() < (nextTipMeasurement)) { return; } nextTipMeasurement = xTaskGetTickCount() + (TICKS_100MS * 5); if (tipResistanceReadingSlot < numTipResistanceReadings) { performTipResistanceSampleReading(); return; } // We are sensing the resistance FinishMeasureTipResistance(); tipMeasurementOccuring = false; } #endif uint8_t preStartChecks() { #ifdef TIP_RESISTANCE_SENSE_Pin performTipMeasurementStep(); if (preStartChecksDone() != 1) { return 0; } #endif #ifdef HAS_SPLIT_POWER_PATH // We want to enable the power path that has the highest voltage // Nominally one will be ~=0 and one will be high. Unless you jamb both in, then both _may_ be high, or device may be dead { uint16_t dc = getRawDCVin(); uint16_t pd = getRawPDVin(); if (dc > pd) { HAL_GPIO_WritePin(DC_SELECT_GPIO_Port, DC_SELECT_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(PD_SELECT_GPIO_Port, PD_SELECT_Pin, GPIO_PIN_RESET); } else { HAL_GPIO_WritePin(PD_SELECT_GPIO_Port, PD_SELECT_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(DC_SELECT_GPIO_Port, DC_SELECT_Pin, GPIO_PIN_RESET); } } #endif return 1; } uint64_t getDeviceID() { // return HAL_GetUIDw0() | ((uint64_t)HAL_GetUIDw1() << 32); } uint8_t preStartChecksDone() { #ifdef TIP_RESISTANCE_SENSE_Pin return (lastTipResistance == 0 || tipResistanceReadingSlot < numTipResistanceReadings || tipMeasurementOccuring || tipShorted) ? 0 : 1; #else return 1; #endif } uint8_t getTipResistanceX10() { #ifdef TIP_RESISTANCE_SENSE_Pin // Return tip resistance in x10 ohms // We can measure this using the op-amp uint8_t user_selected_tip = getUserSelectedTipResistance(); if (user_selected_tip == 0) { return lastTipResistance; // Auto mode } return user_selected_tip; #else uint8_t user_selected_tip = getUserSelectedTipResistance(); if (user_selected_tip == 0) { return TIP_RESISTANCE; // Auto mode } return user_selected_tip; #endif } #ifdef TIP_RESISTANCE_SENSE_Pin bool isTipShorted() { return tipShorted; } #else bool isTipShorted() { return false; } #endif uint16_t getTipThermalMass() { #ifdef TIP_RESISTANCE_SENSE_Pin if (lastTipResistance >= 80) { return TIP_THERMAL_MASS; } return 45; #else return TIP_THERMAL_MASS; #endif } uint16_t getTipInertia() { #ifdef TIP_RESISTANCE_SENSE_Pin if (lastTipResistance >= 80) { return TIP_THERMAL_MASS; } return 10; #else return TIP_THERMAL_MASS; #endif } void showBootLogo(void) { BootLogo::handleShowingLogo((uint8_t *)FLASH_LOGOADDR); }