mirror of
https://github.com/tbsdtv/linux_media.git
synced 2025-07-23 12:43:29 +02:00
Pull networking updates from Jakub Kicinski: - Add redirect_neigh() BPF packet redirect helper, allowing to limit stack traversal in common container configs and improving TCP back-pressure. Daniel reports ~10Gbps => ~15Gbps single stream TCP performance gain. - Expand netlink policy support and improve policy export to user space. (Ge)netlink core performs request validation according to declared policies. Expand the expressiveness of those policies (min/max length and bitmasks). Allow dumping policies for particular commands. This is used for feature discovery by user space (instead of kernel version parsing or trial and error). - Support IGMPv3/MLDv2 multicast listener discovery protocols in bridge. - Allow more than 255 IPv4 multicast interfaces. - Add support for Type of Service (ToS) reflection in SYN/SYN-ACK packets of TCPv6. - In Multi-patch TCP (MPTCP) support concurrent transmission of data on multiple subflows in a load balancing scenario. Enhance advertising addresses via the RM_ADDR/ADD_ADDR options. - Support SMC-Dv2 version of SMC, which enables multi-subnet deployments. - Allow more calls to same peer in RxRPC. - Support two new Controller Area Network (CAN) protocols - CAN-FD and ISO 15765-2:2016. - Add xfrm/IPsec compat layer, solving the 32bit user space on 64bit kernel problem. - Add TC actions for implementing MPLS L2 VPNs. - Improve nexthop code - e.g. handle various corner cases when nexthop objects are removed from groups better, skip unnecessary notifications and make it easier to offload nexthops into HW by converting to a blocking notifier. - Support adding and consuming TCP header options by BPF programs, opening the doors for easy experimental and deployment-specific TCP option use. - Reorganize TCP congestion control (CC) initialization to simplify life of TCP CC implemented in BPF. - Add support for shipping BPF programs with the kernel and loading them early on boot via the User Mode Driver mechanism, hence reusing all the user space infra we have. - Support sleepable BPF programs, initially targeting LSM and tracing. - Add bpf_d_path() helper for returning full path for given 'struct path'. - Make bpf_tail_call compatible with bpf-to-bpf calls. - Allow BPF programs to call map_update_elem on sockmaps. - Add BPF Type Format (BTF) support for type and enum discovery, as well as support for using BTF within the kernel itself (current use is for pretty printing structures). - Support listing and getting information about bpf_links via the bpf syscall. - Enhance kernel interfaces around NIC firmware update. Allow specifying overwrite mask to control if settings etc. are reset during update; report expected max time operation may take to users; support firmware activation without machine reboot incl. limits of how much impact reset may have (e.g. dropping link or not). - Extend ethtool configuration interface to report IEEE-standard counters, to limit the need for per-vendor logic in user space. - Adopt or extend devlink use for debug, monitoring, fw update in many drivers (dsa loop, ice, ionic, sja1105, qed, mlxsw, mv88e6xxx, dpaa2-eth). - In mlxsw expose critical and emergency SFP module temperature alarms. Refactor port buffer handling to make the defaults more suitable and support setting these values explicitly via the DCBNL interface. - Add XDP support for Intel's igb driver. - Support offloading TC flower classification and filtering rules to mscc_ocelot switches. - Add PTP support for Marvell Octeontx2 and PP2.2 hardware, as well as fixed interval period pulse generator and one-step timestamping in dpaa-eth. - Add support for various auth offloads in WiFi APs, e.g. SAE (WPA3) offload. - Add Lynx PHY/PCS MDIO module, and convert various drivers which have this HW to use it. Convert mvpp2 to split PCS. - Support Marvell Prestera 98DX3255 24-port switch ASICs, as well as 7-port Mediatek MT7531 IP. - Add initial support for QCA6390 and IPQ6018 in ath11k WiFi driver, and wcn3680 support in wcn36xx. - Improve performance for packets which don't require much offloads on recent Mellanox NICs by 20% by making multiple packets share a descriptor entry. - Move chelsio inline crypto drivers (for TLS and IPsec) from the crypto subtree to drivers/net. Move MDIO drivers out of the phy directory. - Clean up a lot of W=1 warnings, reportedly the actively developed subsections of networking drivers should now build W=1 warning free. - Make sure drivers don't use in_interrupt() to dynamically adapt their code. Convert tasklets to use new tasklet_setup API (sadly this conversion is not yet complete). * tag 'net-next-5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2583 commits) Revert "bpfilter: Fix build error with CONFIG_BPFILTER_UMH" net, sockmap: Don't call bpf_prog_put() on NULL pointer bpf, selftest: Fix flaky tcp_hdr_options test when adding addr to lo bpf, sockmap: Add locking annotations to iterator netfilter: nftables: allow re-computing sctp CRC-32C in 'payload' statements net: fix pos incrementment in ipv6_route_seq_next net/smc: fix invalid return code in smcd_new_buf_create() net/smc: fix valid DMBE buffer sizes net/smc: fix use-after-free of delayed events bpfilter: Fix build error with CONFIG_BPFILTER_UMH cxgb4/ch_ipsec: Replace the module name to ch_ipsec from chcr net: sched: Fix suspicious RCU usage while accessing tcf_tunnel_info bpf: Fix register equivalence tracking. rxrpc: Fix loss of final ack on shutdown rxrpc: Fix bundle counting for exclusive connections netfilter: restore NF_INET_NUMHOOKS ibmveth: Identify ingress large send packets. ibmveth: Switch order of ibmveth_helper calls. cxgb4: handle 4-tuple PEDIT to NAT mode translation selftests: Add VRF route leaking tests ...
365 lines
9.8 KiB
C
365 lines
9.8 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
|
|
#ifndef _ASM_X86_NOSPEC_BRANCH_H_
|
|
#define _ASM_X86_NOSPEC_BRANCH_H_
|
|
|
|
#include <linux/static_key.h>
|
|
#include <linux/objtool.h>
|
|
|
|
#include <asm/alternative.h>
|
|
#include <asm/alternative-asm.h>
|
|
#include <asm/cpufeatures.h>
|
|
#include <asm/msr-index.h>
|
|
#include <asm/unwind_hints.h>
|
|
|
|
/*
|
|
* Fill the CPU return stack buffer.
|
|
*
|
|
* Each entry in the RSB, if used for a speculative 'ret', contains an
|
|
* infinite 'pause; lfence; jmp' loop to capture speculative execution.
|
|
*
|
|
* This is required in various cases for retpoline and IBRS-based
|
|
* mitigations for the Spectre variant 2 vulnerability. Sometimes to
|
|
* eliminate potentially bogus entries from the RSB, and sometimes
|
|
* purely to ensure that it doesn't get empty, which on some CPUs would
|
|
* allow predictions from other (unwanted!) sources to be used.
|
|
*
|
|
* We define a CPP macro such that it can be used from both .S files and
|
|
* inline assembly. It's possible to do a .macro and then include that
|
|
* from C via asm(".include <asm/nospec-branch.h>") but let's not go there.
|
|
*/
|
|
|
|
#define RSB_CLEAR_LOOPS 32 /* To forcibly overwrite all entries */
|
|
|
|
/*
|
|
* Google experimented with loop-unrolling and this turned out to be
|
|
* the optimal version — two calls, each with their own speculation
|
|
* trap should their return address end up getting used, in a loop.
|
|
*/
|
|
#define __FILL_RETURN_BUFFER(reg, nr, sp) \
|
|
mov $(nr/2), reg; \
|
|
771: \
|
|
ANNOTATE_INTRA_FUNCTION_CALL; \
|
|
call 772f; \
|
|
773: /* speculation trap */ \
|
|
UNWIND_HINT_EMPTY; \
|
|
pause; \
|
|
lfence; \
|
|
jmp 773b; \
|
|
772: \
|
|
ANNOTATE_INTRA_FUNCTION_CALL; \
|
|
call 774f; \
|
|
775: /* speculation trap */ \
|
|
UNWIND_HINT_EMPTY; \
|
|
pause; \
|
|
lfence; \
|
|
jmp 775b; \
|
|
774: \
|
|
add $(BITS_PER_LONG/8) * 2, sp; \
|
|
dec reg; \
|
|
jnz 771b;
|
|
|
|
#ifdef __ASSEMBLY__
|
|
|
|
/*
|
|
* This should be used immediately before an indirect jump/call. It tells
|
|
* objtool the subsequent indirect jump/call is vouched safe for retpoline
|
|
* builds.
|
|
*/
|
|
.macro ANNOTATE_RETPOLINE_SAFE
|
|
.Lannotate_\@:
|
|
.pushsection .discard.retpoline_safe
|
|
_ASM_PTR .Lannotate_\@
|
|
.popsection
|
|
.endm
|
|
|
|
/*
|
|
* JMP_NOSPEC and CALL_NOSPEC macros can be used instead of a simple
|
|
* indirect jmp/call which may be susceptible to the Spectre variant 2
|
|
* attack.
|
|
*/
|
|
.macro JMP_NOSPEC reg:req
|
|
#ifdef CONFIG_RETPOLINE
|
|
ALTERNATIVE_2 __stringify(ANNOTATE_RETPOLINE_SAFE; jmp *%\reg), \
|
|
__stringify(jmp __x86_retpoline_\reg), X86_FEATURE_RETPOLINE, \
|
|
__stringify(lfence; ANNOTATE_RETPOLINE_SAFE; jmp *%\reg), X86_FEATURE_RETPOLINE_AMD
|
|
#else
|
|
jmp *%\reg
|
|
#endif
|
|
.endm
|
|
|
|
.macro CALL_NOSPEC reg:req
|
|
#ifdef CONFIG_RETPOLINE
|
|
ALTERNATIVE_2 __stringify(ANNOTATE_RETPOLINE_SAFE; call *%\reg), \
|
|
__stringify(call __x86_retpoline_\reg), X86_FEATURE_RETPOLINE, \
|
|
__stringify(lfence; ANNOTATE_RETPOLINE_SAFE; call *%\reg), X86_FEATURE_RETPOLINE_AMD
|
|
#else
|
|
call *%\reg
|
|
#endif
|
|
.endm
|
|
|
|
/*
|
|
* A simpler FILL_RETURN_BUFFER macro. Don't make people use the CPP
|
|
* monstrosity above, manually.
|
|
*/
|
|
.macro FILL_RETURN_BUFFER reg:req nr:req ftr:req
|
|
#ifdef CONFIG_RETPOLINE
|
|
ALTERNATIVE "jmp .Lskip_rsb_\@", "", \ftr
|
|
__FILL_RETURN_BUFFER(\reg,\nr,%_ASM_SP)
|
|
.Lskip_rsb_\@:
|
|
#endif
|
|
.endm
|
|
|
|
#else /* __ASSEMBLY__ */
|
|
|
|
#define ANNOTATE_RETPOLINE_SAFE \
|
|
"999:\n\t" \
|
|
".pushsection .discard.retpoline_safe\n\t" \
|
|
_ASM_PTR " 999b\n\t" \
|
|
".popsection\n\t"
|
|
|
|
#ifdef CONFIG_RETPOLINE
|
|
#ifdef CONFIG_X86_64
|
|
|
|
/*
|
|
* Inline asm uses the %V modifier which is only in newer GCC
|
|
* which is ensured when CONFIG_RETPOLINE is defined.
|
|
*/
|
|
# define CALL_NOSPEC \
|
|
ALTERNATIVE_2( \
|
|
ANNOTATE_RETPOLINE_SAFE \
|
|
"call *%[thunk_target]\n", \
|
|
"call __x86_retpoline_%V[thunk_target]\n", \
|
|
X86_FEATURE_RETPOLINE, \
|
|
"lfence;\n" \
|
|
ANNOTATE_RETPOLINE_SAFE \
|
|
"call *%[thunk_target]\n", \
|
|
X86_FEATURE_RETPOLINE_AMD)
|
|
|
|
# define THUNK_TARGET(addr) [thunk_target] "r" (addr)
|
|
|
|
#else /* CONFIG_X86_32 */
|
|
/*
|
|
* For i386 we use the original ret-equivalent retpoline, because
|
|
* otherwise we'll run out of registers. We don't care about CET
|
|
* here, anyway.
|
|
*/
|
|
# define CALL_NOSPEC \
|
|
ALTERNATIVE_2( \
|
|
ANNOTATE_RETPOLINE_SAFE \
|
|
"call *%[thunk_target]\n", \
|
|
" jmp 904f;\n" \
|
|
" .align 16\n" \
|
|
"901: call 903f;\n" \
|
|
"902: pause;\n" \
|
|
" lfence;\n" \
|
|
" jmp 902b;\n" \
|
|
" .align 16\n" \
|
|
"903: lea 4(%%esp), %%esp;\n" \
|
|
" pushl %[thunk_target];\n" \
|
|
" ret;\n" \
|
|
" .align 16\n" \
|
|
"904: call 901b;\n", \
|
|
X86_FEATURE_RETPOLINE, \
|
|
"lfence;\n" \
|
|
ANNOTATE_RETPOLINE_SAFE \
|
|
"call *%[thunk_target]\n", \
|
|
X86_FEATURE_RETPOLINE_AMD)
|
|
|
|
# define THUNK_TARGET(addr) [thunk_target] "rm" (addr)
|
|
#endif
|
|
#else /* No retpoline for C / inline asm */
|
|
# define CALL_NOSPEC "call *%[thunk_target]\n"
|
|
# define THUNK_TARGET(addr) [thunk_target] "rm" (addr)
|
|
#endif
|
|
|
|
/* The Spectre V2 mitigation variants */
|
|
enum spectre_v2_mitigation {
|
|
SPECTRE_V2_NONE,
|
|
SPECTRE_V2_RETPOLINE_GENERIC,
|
|
SPECTRE_V2_RETPOLINE_AMD,
|
|
SPECTRE_V2_IBRS_ENHANCED,
|
|
};
|
|
|
|
/* The indirect branch speculation control variants */
|
|
enum spectre_v2_user_mitigation {
|
|
SPECTRE_V2_USER_NONE,
|
|
SPECTRE_V2_USER_STRICT,
|
|
SPECTRE_V2_USER_STRICT_PREFERRED,
|
|
SPECTRE_V2_USER_PRCTL,
|
|
SPECTRE_V2_USER_SECCOMP,
|
|
};
|
|
|
|
/* The Speculative Store Bypass disable variants */
|
|
enum ssb_mitigation {
|
|
SPEC_STORE_BYPASS_NONE,
|
|
SPEC_STORE_BYPASS_DISABLE,
|
|
SPEC_STORE_BYPASS_PRCTL,
|
|
SPEC_STORE_BYPASS_SECCOMP,
|
|
};
|
|
|
|
extern char __indirect_thunk_start[];
|
|
extern char __indirect_thunk_end[];
|
|
|
|
static __always_inline
|
|
void alternative_msr_write(unsigned int msr, u64 val, unsigned int feature)
|
|
{
|
|
asm volatile(ALTERNATIVE("", "wrmsr", %c[feature])
|
|
: : "c" (msr),
|
|
"a" ((u32)val),
|
|
"d" ((u32)(val >> 32)),
|
|
[feature] "i" (feature)
|
|
: "memory");
|
|
}
|
|
|
|
static inline void indirect_branch_prediction_barrier(void)
|
|
{
|
|
u64 val = PRED_CMD_IBPB;
|
|
|
|
alternative_msr_write(MSR_IA32_PRED_CMD, val, X86_FEATURE_USE_IBPB);
|
|
}
|
|
|
|
/* The Intel SPEC CTRL MSR base value cache */
|
|
extern u64 x86_spec_ctrl_base;
|
|
|
|
/*
|
|
* With retpoline, we must use IBRS to restrict branch prediction
|
|
* before calling into firmware.
|
|
*
|
|
* (Implemented as CPP macros due to header hell.)
|
|
*/
|
|
#define firmware_restrict_branch_speculation_start() \
|
|
do { \
|
|
u64 val = x86_spec_ctrl_base | SPEC_CTRL_IBRS; \
|
|
\
|
|
preempt_disable(); \
|
|
alternative_msr_write(MSR_IA32_SPEC_CTRL, val, \
|
|
X86_FEATURE_USE_IBRS_FW); \
|
|
} while (0)
|
|
|
|
#define firmware_restrict_branch_speculation_end() \
|
|
do { \
|
|
u64 val = x86_spec_ctrl_base; \
|
|
\
|
|
alternative_msr_write(MSR_IA32_SPEC_CTRL, val, \
|
|
X86_FEATURE_USE_IBRS_FW); \
|
|
preempt_enable(); \
|
|
} while (0)
|
|
|
|
DECLARE_STATIC_KEY_FALSE(switch_to_cond_stibp);
|
|
DECLARE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
|
|
DECLARE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
|
|
|
|
DECLARE_STATIC_KEY_FALSE(mds_user_clear);
|
|
DECLARE_STATIC_KEY_FALSE(mds_idle_clear);
|
|
|
|
#include <asm/segment.h>
|
|
|
|
/**
|
|
* mds_clear_cpu_buffers - Mitigation for MDS and TAA vulnerability
|
|
*
|
|
* This uses the otherwise unused and obsolete VERW instruction in
|
|
* combination with microcode which triggers a CPU buffer flush when the
|
|
* instruction is executed.
|
|
*/
|
|
static __always_inline void mds_clear_cpu_buffers(void)
|
|
{
|
|
static const u16 ds = __KERNEL_DS;
|
|
|
|
/*
|
|
* Has to be the memory-operand variant because only that
|
|
* guarantees the CPU buffer flush functionality according to
|
|
* documentation. The register-operand variant does not.
|
|
* Works with any segment selector, but a valid writable
|
|
* data segment is the fastest variant.
|
|
*
|
|
* "cc" clobber is required because VERW modifies ZF.
|
|
*/
|
|
asm volatile("verw %[ds]" : : [ds] "m" (ds) : "cc");
|
|
}
|
|
|
|
/**
|
|
* mds_user_clear_cpu_buffers - Mitigation for MDS and TAA vulnerability
|
|
*
|
|
* Clear CPU buffers if the corresponding static key is enabled
|
|
*/
|
|
static __always_inline void mds_user_clear_cpu_buffers(void)
|
|
{
|
|
if (static_branch_likely(&mds_user_clear))
|
|
mds_clear_cpu_buffers();
|
|
}
|
|
|
|
/**
|
|
* mds_idle_clear_cpu_buffers - Mitigation for MDS vulnerability
|
|
*
|
|
* Clear CPU buffers if the corresponding static key is enabled
|
|
*/
|
|
static inline void mds_idle_clear_cpu_buffers(void)
|
|
{
|
|
if (static_branch_likely(&mds_idle_clear))
|
|
mds_clear_cpu_buffers();
|
|
}
|
|
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
/*
|
|
* Below is used in the eBPF JIT compiler and emits the byte sequence
|
|
* for the following assembly:
|
|
*
|
|
* With retpolines configured:
|
|
*
|
|
* callq do_rop
|
|
* spec_trap:
|
|
* pause
|
|
* lfence
|
|
* jmp spec_trap
|
|
* do_rop:
|
|
* mov %rcx,(%rsp) for x86_64
|
|
* mov %edx,(%esp) for x86_32
|
|
* retq
|
|
*
|
|
* Without retpolines configured:
|
|
*
|
|
* jmp *%rcx for x86_64
|
|
* jmp *%edx for x86_32
|
|
*/
|
|
#ifdef CONFIG_RETPOLINE
|
|
# ifdef CONFIG_X86_64
|
|
# define RETPOLINE_RCX_BPF_JIT_SIZE 17
|
|
# define RETPOLINE_RCX_BPF_JIT() \
|
|
do { \
|
|
EMIT1_off32(0xE8, 7); /* callq do_rop */ \
|
|
/* spec_trap: */ \
|
|
EMIT2(0xF3, 0x90); /* pause */ \
|
|
EMIT3(0x0F, 0xAE, 0xE8); /* lfence */ \
|
|
EMIT2(0xEB, 0xF9); /* jmp spec_trap */ \
|
|
/* do_rop: */ \
|
|
EMIT4(0x48, 0x89, 0x0C, 0x24); /* mov %rcx,(%rsp) */ \
|
|
EMIT1(0xC3); /* retq */ \
|
|
} while (0)
|
|
# else /* !CONFIG_X86_64 */
|
|
# define RETPOLINE_EDX_BPF_JIT() \
|
|
do { \
|
|
EMIT1_off32(0xE8, 7); /* call do_rop */ \
|
|
/* spec_trap: */ \
|
|
EMIT2(0xF3, 0x90); /* pause */ \
|
|
EMIT3(0x0F, 0xAE, 0xE8); /* lfence */ \
|
|
EMIT2(0xEB, 0xF9); /* jmp spec_trap */ \
|
|
/* do_rop: */ \
|
|
EMIT3(0x89, 0x14, 0x24); /* mov %edx,(%esp) */ \
|
|
EMIT1(0xC3); /* ret */ \
|
|
} while (0)
|
|
# endif
|
|
#else /* !CONFIG_RETPOLINE */
|
|
# ifdef CONFIG_X86_64
|
|
# define RETPOLINE_RCX_BPF_JIT_SIZE 2
|
|
# define RETPOLINE_RCX_BPF_JIT() \
|
|
EMIT2(0xFF, 0xE1); /* jmp *%rcx */
|
|
# else /* !CONFIG_X86_64 */
|
|
# define RETPOLINE_EDX_BPF_JIT() \
|
|
EMIT2(0xFF, 0xE2) /* jmp *%edx */
|
|
# endif
|
|
#endif
|
|
|
|
#endif /* _ASM_X86_NOSPEC_BRANCH_H_ */
|