Files
linux_media/arch/powerpc/platforms/cell/spufs/file.c
CrazyCat af8890e8f6 [tree-wide] finally take no_llseek out
no_llseek had been defined to NULL two years ago, in commit 868941b
("fs: remove no_llseek")

To quote that commit,

  At -rc1 we'll need do a mechanical removal of no_llseek -

  git grep -l -w no_llseek | grep -v porting.rst | while read i; do
    sed -i '/\<no_llseek\>/d' $i
  done

  would do it.

Unfortunately, that hadn't been done.  Linus, could you do that now, so
that we could finally put that thing to rest? All instances are of the
form
    .llseek = no_llseek,
so it's obviously safe.
2024-12-11 18:00:46 +02:00

2617 lines
61 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* SPU file system -- file contents
*
* (C) Copyright IBM Deutschland Entwicklung GmbH 2005
*
* Author: Arnd Bergmann <arndb@de.ibm.com>
*/
#undef DEBUG
#include <linux/coredump.h>
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/export.h>
#include <linux/pagemap.h>
#include <linux/poll.h>
#include <linux/ptrace.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <asm/io.h>
#include <asm/time.h>
#include <asm/spu.h>
#include <asm/spu_info.h>
#include <linux/uaccess.h>
#include "spufs.h"
#include "sputrace.h"
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
/* Simple attribute files */
struct spufs_attr {
int (*get)(void *, u64 *);
int (*set)(void *, u64);
char get_buf[24]; /* enough to store a u64 and "\n\0" */
char set_buf[24];
void *data;
const char *fmt; /* format for read operation */
struct mutex mutex; /* protects access to these buffers */
};
static int spufs_attr_open(struct inode *inode, struct file *file,
int (*get)(void *, u64 *), int (*set)(void *, u64),
const char *fmt)
{
struct spufs_attr *attr;
attr = kmalloc(sizeof(*attr), GFP_KERNEL);
if (!attr)
return -ENOMEM;
attr->get = get;
attr->set = set;
attr->data = inode->i_private;
attr->fmt = fmt;
mutex_init(&attr->mutex);
file->private_data = attr;
return nonseekable_open(inode, file);
}
static int spufs_attr_release(struct inode *inode, struct file *file)
{
kfree(file->private_data);
return 0;
}
static ssize_t spufs_attr_read(struct file *file, char __user *buf,
size_t len, loff_t *ppos)
{
struct spufs_attr *attr;
size_t size;
ssize_t ret;
attr = file->private_data;
if (!attr->get)
return -EACCES;
ret = mutex_lock_interruptible(&attr->mutex);
if (ret)
return ret;
if (*ppos) { /* continued read */
size = strlen(attr->get_buf);
} else { /* first read */
u64 val;
ret = attr->get(attr->data, &val);
if (ret)
goto out;
size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
attr->fmt, (unsigned long long)val);
}
ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
out:
mutex_unlock(&attr->mutex);
return ret;
}
static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
size_t len, loff_t *ppos)
{
struct spufs_attr *attr;
u64 val;
size_t size;
ssize_t ret;
attr = file->private_data;
if (!attr->set)
return -EACCES;
ret = mutex_lock_interruptible(&attr->mutex);
if (ret)
return ret;
ret = -EFAULT;
size = min(sizeof(attr->set_buf) - 1, len);
if (copy_from_user(attr->set_buf, buf, size))
goto out;
ret = len; /* claim we got the whole input */
attr->set_buf[size] = '\0';
val = simple_strtol(attr->set_buf, NULL, 0);
attr->set(attr->data, val);
out:
mutex_unlock(&attr->mutex);
return ret;
}
static ssize_t spufs_dump_emit(struct coredump_params *cprm, void *buf,
size_t size)
{
if (!dump_emit(cprm, buf, size))
return -EIO;
return size;
}
#define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
static int __fops ## _open(struct inode *inode, struct file *file) \
{ \
__simple_attr_check_format(__fmt, 0ull); \
return spufs_attr_open(inode, file, __get, __set, __fmt); \
} \
static const struct file_operations __fops = { \
.open = __fops ## _open, \
.release = spufs_attr_release, \
.read = spufs_attr_read, \
.write = spufs_attr_write, \
.llseek = generic_file_llseek, \
};
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
mutex_lock(&ctx->mapping_lock);
file->private_data = ctx;
if (!i->i_openers++)
ctx->local_store = inode->i_mapping;
mutex_unlock(&ctx->mapping_lock);
return 0;
}
static int
spufs_mem_release(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
mutex_lock(&ctx->mapping_lock);
if (!--i->i_openers)
ctx->local_store = NULL;
mutex_unlock(&ctx->mapping_lock);
return 0;
}
static ssize_t
spufs_mem_dump(struct spu_context *ctx, struct coredump_params *cprm)
{
return spufs_dump_emit(cprm, ctx->ops->get_ls(ctx), LS_SIZE);
}
static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
size_t size, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
ssize_t ret;
ret = spu_acquire(ctx);
if (ret)
return ret;
ret = simple_read_from_buffer(buffer, size, pos, ctx->ops->get_ls(ctx),
LS_SIZE);
spu_release(ctx);
return ret;
}
static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
size_t size, loff_t *ppos)
{
struct spu_context *ctx = file->private_data;
char *local_store;
loff_t pos = *ppos;
int ret;
if (pos > LS_SIZE)
return -EFBIG;
ret = spu_acquire(ctx);
if (ret)
return ret;
local_store = ctx->ops->get_ls(ctx);
size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size);
spu_release(ctx);
return size;
}
static vm_fault_t
spufs_mem_mmap_fault(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct spu_context *ctx = vma->vm_file->private_data;
unsigned long pfn, offset;
vm_fault_t ret;
offset = vmf->pgoff << PAGE_SHIFT;
if (offset >= LS_SIZE)
return VM_FAULT_SIGBUS;
pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
vmf->address, offset);
if (spu_acquire(ctx))
return VM_FAULT_NOPAGE;
if (ctx->state == SPU_STATE_SAVED) {
vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
} else {
vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
}
ret = vmf_insert_pfn(vma, vmf->address, pfn);
spu_release(ctx);
return ret;
}
static int spufs_mem_mmap_access(struct vm_area_struct *vma,
unsigned long address,
void *buf, int len, int write)
{
struct spu_context *ctx = vma->vm_file->private_data;
unsigned long offset = address - vma->vm_start;
char *local_store;
if (write && !(vma->vm_flags & VM_WRITE))
return -EACCES;
if (spu_acquire(ctx))
return -EINTR;
if ((offset + len) > vma->vm_end)
len = vma->vm_end - offset;
local_store = ctx->ops->get_ls(ctx);
if (write)
memcpy_toio(local_store + offset, buf, len);
else
memcpy_fromio(buf, local_store + offset, len);
spu_release(ctx);
return len;
}
static const struct vm_operations_struct spufs_mem_mmap_vmops = {
.fault = spufs_mem_mmap_fault,
.access = spufs_mem_mmap_access,
};
static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
{
if (!(vma->vm_flags & VM_SHARED))
return -EINVAL;
vm_flags_set(vma, VM_IO | VM_PFNMAP);
vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
vma->vm_ops = &spufs_mem_mmap_vmops;
return 0;
}
static const struct file_operations spufs_mem_fops = {
.open = spufs_mem_open,
.release = spufs_mem_release,
.read = spufs_mem_read,
.write = spufs_mem_write,
.llseek = generic_file_llseek,
.mmap = spufs_mem_mmap,
};
static vm_fault_t spufs_ps_fault(struct vm_fault *vmf,
unsigned long ps_offs,
unsigned long ps_size)
{
struct spu_context *ctx = vmf->vma->vm_file->private_data;
unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
int err = 0;
vm_fault_t ret = VM_FAULT_NOPAGE;
spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
if (offset >= ps_size)
return VM_FAULT_SIGBUS;
if (fatal_signal_pending(current))
return VM_FAULT_SIGBUS;
/*
* Because we release the mmap_lock, the context may be destroyed while
* we're in spu_wait. Grab an extra reference so it isn't destroyed
* in the meantime.
*/
get_spu_context(ctx);
/*
* We have to wait for context to be loaded before we have
* pages to hand out to the user, but we don't want to wait
* with the mmap_lock held.
* It is possible to drop the mmap_lock here, but then we need
* to return VM_FAULT_NOPAGE because the mappings may have
* hanged.
*/
if (spu_acquire(ctx))
goto refault;
if (ctx->state == SPU_STATE_SAVED) {
mmap_read_unlock(current->mm);
spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
err = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
mmap_read_lock(current->mm);
} else {
area = ctx->spu->problem_phys + ps_offs;
ret = vmf_insert_pfn(vmf->vma, vmf->address,
(area + offset) >> PAGE_SHIFT);
spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
}
if (!err)
spu_release(ctx);
refault:
put_spu_context(ctx);
return ret;
}
#if SPUFS_MMAP_4K
static vm_fault_t spufs_cntl_mmap_fault(struct vm_fault *vmf)
{
return spufs_ps_fault(vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
}
static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
.fault = spufs_cntl_mmap_fault,
};
/*
* mmap support for problem state control area [0x4000 - 0x4fff].
*/
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
if (!(vma->vm_flags & VM_SHARED))
return -EINVAL;
vm_flags_set(vma, VM_IO | VM_PFNMAP);
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
vma->vm_ops = &spufs_cntl_mmap_vmops;
return 0;
}
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
static int spufs_cntl_get(void *data, u64 *val)
{
struct spu_context *ctx = data;
int ret;
ret = spu_acquire(ctx);
if (ret)
return ret;
*val = ctx->ops->status_read(ctx);
spu_release(ctx);
return 0;
}
static int spufs_cntl_set(void *data, u64 val)
{
struct spu_context *ctx = data;
int ret;
ret = spu_acquire(ctx);
if (ret)
return ret;
ctx->ops->runcntl_write(ctx, val);
spu_release(ctx);
return 0;
}
static int spufs_cntl_open(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
mutex_lock(&ctx->mapping_lock);
file->private_data = ctx;
if (!i->i_openers++)
ctx->cntl = inode->i_mapping;
mutex_unlock(&ctx->mapping_lock);
return simple_attr_open(inode, file, spufs_cntl_get,
spufs_cntl_set, "0x%08lx");
}
static int
spufs_cntl_release(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
simple_attr_release(inode, file);
mutex_lock(&ctx->mapping_lock);
if (!--i->i_openers)
ctx->cntl = NULL;
mutex_unlock(&ctx->mapping_lock);
return 0;
}
static const struct file_operations spufs_cntl_fops = {
.open = spufs_cntl_open,
.release = spufs_cntl_release,
.read = simple_attr_read,
.write = simple_attr_write,
.mmap = spufs_cntl_mmap,
};
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
file->private_data = i->i_ctx;
return 0;
}
static ssize_t
spufs_regs_dump(struct spu_context *ctx, struct coredump_params *cprm)
{
return spufs_dump_emit(cprm, ctx->csa.lscsa->gprs,
sizeof(ctx->csa.lscsa->gprs));
}
static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
size_t size, loff_t *pos)
{
int ret;
struct spu_context *ctx = file->private_data;
/* pre-check for file position: if we'd return EOF, there's no point
* causing a deschedule */
if (*pos >= sizeof(ctx->csa.lscsa->gprs))
return 0;
ret = spu_acquire_saved(ctx);
if (ret)
return ret;
ret = simple_read_from_buffer(buffer, size, pos, ctx->csa.lscsa->gprs,
sizeof(ctx->csa.lscsa->gprs));
spu_release_saved(ctx);
return ret;
}
static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
size_t size, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
struct spu_lscsa *lscsa = ctx->csa.lscsa;
int ret;
if (*pos >= sizeof(lscsa->gprs))
return -EFBIG;
ret = spu_acquire_saved(ctx);
if (ret)
return ret;
size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos,
buffer, size);
spu_release_saved(ctx);
return size;
}
static const struct file_operations spufs_regs_fops = {
.open = spufs_regs_open,
.read = spufs_regs_read,
.write = spufs_regs_write,
.llseek = generic_file_llseek,
};
static ssize_t
spufs_fpcr_dump(struct spu_context *ctx, struct coredump_params *cprm)
{
return spufs_dump_emit(cprm, &ctx->csa.lscsa->fpcr,
sizeof(ctx->csa.lscsa->fpcr));
}
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
size_t size, loff_t * pos)
{
int ret;
struct spu_context *ctx = file->private_data;
ret = spu_acquire_saved(ctx);
if (ret)
return ret;
ret = simple_read_from_buffer(buffer, size, pos, &ctx->csa.lscsa->fpcr,
sizeof(ctx->csa.lscsa->fpcr));
spu_release_saved(ctx);
return ret;
}
static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
size_t size, loff_t * pos)
{
struct spu_context *ctx = file->private_data;
struct spu_lscsa *lscsa = ctx->csa.lscsa;
int ret;
if (*pos >= sizeof(lscsa->fpcr))
return -EFBIG;
ret = spu_acquire_saved(ctx);
if (ret)
return ret;
size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos,
buffer, size);
spu_release_saved(ctx);
return size;
}
static const struct file_operations spufs_fpcr_fops = {
.open = spufs_regs_open,
.read = spufs_fpcr_read,
.write = spufs_fpcr_write,
.llseek = generic_file_llseek,
};
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
file->private_data = i->i_ctx;
return stream_open(inode, file);
}
/*
* Read as many bytes from the mailbox as possible, until
* one of the conditions becomes true:
*
* - no more data available in the mailbox
* - end of the user provided buffer
* - end of the mapped area
*/
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
u32 mbox_data, __user *udata = (void __user *)buf;
ssize_t count;
if (len < 4)
return -EINVAL;
count = spu_acquire(ctx);
if (count)
return count;
for (count = 0; (count + 4) <= len; count += 4, udata++) {
int ret;
ret = ctx->ops->mbox_read(ctx, &mbox_data);
if (ret == 0)
break;
/*
* at the end of the mapped area, we can fault
* but still need to return the data we have
* read successfully so far.
*/
ret = put_user(mbox_data, udata);
if (ret) {
if (!count)
count = -EFAULT;
break;
}
}
spu_release(ctx);
if (!count)
count = -EAGAIN;
return count;
}
static const struct file_operations spufs_mbox_fops = {
.open = spufs_pipe_open,
.read = spufs_mbox_read,
};
static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
ssize_t ret;
u32 mbox_stat;
if (len < 4)
return -EINVAL;
ret = spu_acquire(ctx);
if (ret)
return ret;
mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
spu_release(ctx);
if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
return -EFAULT;
return 4;
}
static const struct file_operations spufs_mbox_stat_fops = {
.open = spufs_pipe_open,
.read = spufs_mbox_stat_read,
};
/* low-level ibox access function */
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
{
return ctx->ops->ibox_read(ctx, data);
}
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
{
struct spu_context *ctx = spu->ctx;
if (ctx)
wake_up_all(&ctx->ibox_wq);
}
/*
* Read as many bytes from the interrupt mailbox as possible, until
* one of the conditions becomes true:
*
* - no more data available in the mailbox
* - end of the user provided buffer
* - end of the mapped area
*
* If the file is opened without O_NONBLOCK, we wait here until
* any data is available, but return when we have been able to
* read something.
*/
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
u32 ibox_data, __user *udata = (void __user *)buf;
ssize_t count;
if (len < 4)
return -EINVAL;
count = spu_acquire(ctx);
if (count)
goto out;
/* wait only for the first element */
count = 0;
if (file->f_flags & O_NONBLOCK) {
if (!spu_ibox_read(ctx, &ibox_data)) {
count = -EAGAIN;
goto out_unlock;
}
} else {
count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
if (count)
goto out;
}
/* if we can't write at all, return -EFAULT */
count = put_user(ibox_data, udata);
if (count)
goto out_unlock;
for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
int ret;
ret = ctx->ops->ibox_read(ctx, &ibox_data);
if (ret == 0)
break;
/*
* at the end of the mapped area, we can fault
* but still need to return the data we have
* read successfully so far.
*/
ret = put_user(ibox_data, udata);
if (ret)
break;
}
out_unlock:
spu_release(ctx);
out:
return count;
}
static __poll_t spufs_ibox_poll(struct file *file, poll_table *wait)
{
struct spu_context *ctx = file->private_data;
__poll_t mask;
poll_wait(file, &ctx->ibox_wq, wait);
/*
* For now keep this uninterruptible and also ignore the rule
* that poll should not sleep. Will be fixed later.
*/
mutex_lock(&ctx->state_mutex);
mask = ctx->ops->mbox_stat_poll(ctx, EPOLLIN | EPOLLRDNORM);
spu_release(ctx);
return mask;
}
static const struct file_operations spufs_ibox_fops = {
.open = spufs_pipe_open,
.read = spufs_ibox_read,
.poll = spufs_ibox_poll,
};
static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
ssize_t ret;
u32 ibox_stat;
if (len < 4)
return -EINVAL;
ret = spu_acquire(ctx);
if (ret)
return ret;
ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
spu_release(ctx);
if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
return -EFAULT;
return 4;
}
static const struct file_operations spufs_ibox_stat_fops = {
.open = spufs_pipe_open,
.read = spufs_ibox_stat_read,
};
/* low-level mailbox write */
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
{
return ctx->ops->wbox_write(ctx, data);
}
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
{
struct spu_context *ctx = spu->ctx;
if (ctx)
wake_up_all(&ctx->wbox_wq);
}
/*
* Write as many bytes to the interrupt mailbox as possible, until
* one of the conditions becomes true:
*
* - the mailbox is full
* - end of the user provided buffer
* - end of the mapped area
*
* If the file is opened without O_NONBLOCK, we wait here until
* space is available, but return when we have been able to
* write something.
*/
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
u32 wbox_data, __user *udata = (void __user *)buf;
ssize_t count;
if (len < 4)
return -EINVAL;
if (get_user(wbox_data, udata))
return -EFAULT;
count = spu_acquire(ctx);
if (count)
goto out;
/*
* make sure we can at least write one element, by waiting
* in case of !O_NONBLOCK
*/
count = 0;
if (file->f_flags & O_NONBLOCK) {
if (!spu_wbox_write(ctx, wbox_data)) {
count = -EAGAIN;
goto out_unlock;
}
} else {
count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
if (count)
goto out;
}
/* write as much as possible */
for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
int ret;
ret = get_user(wbox_data, udata);
if (ret)
break;
ret = spu_wbox_write(ctx, wbox_data);
if (ret == 0)
break;
}
out_unlock:
spu_release(ctx);
out:
return count;
}
static __poll_t spufs_wbox_poll(struct file *file, poll_table *wait)
{
struct spu_context *ctx = file->private_data;
__poll_t mask;
poll_wait(file, &ctx->wbox_wq, wait);
/*
* For now keep this uninterruptible and also ignore the rule
* that poll should not sleep. Will be fixed later.
*/
mutex_lock(&ctx->state_mutex);
mask = ctx->ops->mbox_stat_poll(ctx, EPOLLOUT | EPOLLWRNORM);
spu_release(ctx);
return mask;
}
static const struct file_operations spufs_wbox_fops = {
.open = spufs_pipe_open,
.write = spufs_wbox_write,
.poll = spufs_wbox_poll,
};
static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
ssize_t ret;
u32 wbox_stat;
if (len < 4)
return -EINVAL;
ret = spu_acquire(ctx);
if (ret)
return ret;
wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
spu_release(ctx);
if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
return -EFAULT;
return 4;
}
static const struct file_operations spufs_wbox_stat_fops = {
.open = spufs_pipe_open,
.read = spufs_wbox_stat_read,
};
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
mutex_lock(&ctx->mapping_lock);
file->private_data = ctx;
if (!i->i_openers++)
ctx->signal1 = inode->i_mapping;
mutex_unlock(&ctx->mapping_lock);
return nonseekable_open(inode, file);
}
static int
spufs_signal1_release(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
mutex_lock(&ctx->mapping_lock);
if (!--i->i_openers)
ctx->signal1 = NULL;
mutex_unlock(&ctx->mapping_lock);
return 0;
}
static ssize_t spufs_signal1_dump(struct spu_context *ctx,
struct coredump_params *cprm)
{
if (!ctx->csa.spu_chnlcnt_RW[3])
return 0;
return spufs_dump_emit(cprm, &ctx->csa.spu_chnldata_RW[3],
sizeof(ctx->csa.spu_chnldata_RW[3]));
}
static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
size_t len)
{
if (len < sizeof(ctx->csa.spu_chnldata_RW[3]))
return -EINVAL;
if (!ctx->csa.spu_chnlcnt_RW[3])
return 0;
if (copy_to_user(buf, &ctx->csa.spu_chnldata_RW[3],
sizeof(ctx->csa.spu_chnldata_RW[3])))
return -EFAULT;
return sizeof(ctx->csa.spu_chnldata_RW[3]);
}
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
int ret;
struct spu_context *ctx = file->private_data;
ret = spu_acquire_saved(ctx);
if (ret)
return ret;
ret = __spufs_signal1_read(ctx, buf, len);
spu_release_saved(ctx);
return ret;
}
static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx;
ssize_t ret;
u32 data;
ctx = file->private_data;
if (len < 4)
return -EINVAL;
if (copy_from_user(&data, buf, 4))
return -EFAULT;
ret = spu_acquire(ctx);
if (ret)
return ret;
ctx->ops->signal1_write(ctx, data);
spu_release(ctx);
return 4;
}
static vm_fault_t
spufs_signal1_mmap_fault(struct vm_fault *vmf)
{
#if SPUFS_SIGNAL_MAP_SIZE == 0x1000
return spufs_ps_fault(vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
#elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
* signal 1 and 2 area
*/
return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
#else
#error unsupported page size
#endif
}
static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
.fault = spufs_signal1_mmap_fault,
};
static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
if (!(vma->vm_flags & VM_SHARED))
return -EINVAL;
vm_flags_set(vma, VM_IO | VM_PFNMAP);
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
vma->vm_ops = &spufs_signal1_mmap_vmops;
return 0;
}
static const struct file_operations spufs_signal1_fops = {
.open = spufs_signal1_open,
.release = spufs_signal1_release,
.read = spufs_signal1_read,
.write = spufs_signal1_write,
.mmap = spufs_signal1_mmap,
};
static const struct file_operations spufs_signal1_nosched_fops = {
.open = spufs_signal1_open,
.release = spufs_signal1_release,
.write = spufs_signal1_write,
.mmap = spufs_signal1_mmap,
};
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
mutex_lock(&ctx->mapping_lock);
file->private_data = ctx;
if (!i->i_openers++)
ctx->signal2 = inode->i_mapping;
mutex_unlock(&ctx->mapping_lock);
return nonseekable_open(inode, file);
}
static int
spufs_signal2_release(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
mutex_lock(&ctx->mapping_lock);
if (!--i->i_openers)
ctx->signal2 = NULL;
mutex_unlock(&ctx->mapping_lock);
return 0;
}
static ssize_t spufs_signal2_dump(struct spu_context *ctx,
struct coredump_params *cprm)
{
if (!ctx->csa.spu_chnlcnt_RW[4])
return 0;
return spufs_dump_emit(cprm, &ctx->csa.spu_chnldata_RW[4],
sizeof(ctx->csa.spu_chnldata_RW[4]));
}
static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
size_t len)
{
if (len < sizeof(ctx->csa.spu_chnldata_RW[4]))
return -EINVAL;
if (!ctx->csa.spu_chnlcnt_RW[4])
return 0;
if (copy_to_user(buf, &ctx->csa.spu_chnldata_RW[4],
sizeof(ctx->csa.spu_chnldata_RW[4])))
return -EFAULT;
return sizeof(ctx->csa.spu_chnldata_RW[4]);
}
static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
int ret;
ret = spu_acquire_saved(ctx);
if (ret)
return ret;
ret = __spufs_signal2_read(ctx, buf, len);
spu_release_saved(ctx);
return ret;
}
static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx;
ssize_t ret;
u32 data;
ctx = file->private_data;
if (len < 4)
return -EINVAL;
if (copy_from_user(&data, buf, 4))
return -EFAULT;
ret = spu_acquire(ctx);
if (ret)
return ret;
ctx->ops->signal2_write(ctx, data);
spu_release(ctx);
return 4;
}
#if SPUFS_MMAP_4K
static vm_fault_t
spufs_signal2_mmap_fault(struct vm_fault *vmf)
{
#if SPUFS_SIGNAL_MAP_SIZE == 0x1000
return spufs_ps_fault(vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
#elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
* signal 1 and 2 area
*/
return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
#else
#error unsupported page size
#endif
}
static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
.fault = spufs_signal2_mmap_fault,
};
static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
if (!(vma->vm_flags & VM_SHARED))
return -EINVAL;
vm_flags_set(vma, VM_IO | VM_PFNMAP);
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
vma->vm_ops = &spufs_signal2_mmap_vmops;
return 0;
}
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
static const struct file_operations spufs_signal2_fops = {
.open = spufs_signal2_open,
.release = spufs_signal2_release,
.read = spufs_signal2_read,
.write = spufs_signal2_write,
.mmap = spufs_signal2_mmap,
};
static const struct file_operations spufs_signal2_nosched_fops = {
.open = spufs_signal2_open,
.release = spufs_signal2_release,
.write = spufs_signal2_write,
.mmap = spufs_signal2_mmap,
};
/*
* This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
* work of acquiring (or not) the SPU context before calling through
* to the actual get routine. The set routine is called directly.
*/
#define SPU_ATTR_NOACQUIRE 0
#define SPU_ATTR_ACQUIRE 1
#define SPU_ATTR_ACQUIRE_SAVED 2
#define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \
static int __##__get(void *data, u64 *val) \
{ \
struct spu_context *ctx = data; \
int ret = 0; \
\
if (__acquire == SPU_ATTR_ACQUIRE) { \
ret = spu_acquire(ctx); \
if (ret) \
return ret; \
*val = __get(ctx); \
spu_release(ctx); \
} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \
ret = spu_acquire_saved(ctx); \
if (ret) \
return ret; \
*val = __get(ctx); \
spu_release_saved(ctx); \
} else \
*val = __get(ctx); \
\
return 0; \
} \
DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
static int spufs_signal1_type_set(void *data, u64 val)
{
struct spu_context *ctx = data;
int ret;
ret = spu_acquire(ctx);
if (ret)
return ret;
ctx->ops->signal1_type_set(ctx, val);
spu_release(ctx);
return 0;
}
static u64 spufs_signal1_type_get(struct spu_context *ctx)
{
return ctx->ops->signal1_type_get(ctx);
}
DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
static int spufs_signal2_type_set(void *data, u64 val)
{
struct spu_context *ctx = data;
int ret;
ret = spu_acquire(ctx);
if (ret)
return ret;
ctx->ops->signal2_type_set(ctx, val);
spu_release(ctx);
return 0;
}
static u64 spufs_signal2_type_get(struct spu_context *ctx)
{
return ctx->ops->signal2_type_get(ctx);
}
DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
#if SPUFS_MMAP_4K
static vm_fault_t
spufs_mss_mmap_fault(struct vm_fault *vmf)
{
return spufs_ps_fault(vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
}
static const struct vm_operations_struct spufs_mss_mmap_vmops = {
.fault = spufs_mss_mmap_fault,
};
/*
* mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
*/
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
if (!(vma->vm_flags & VM_SHARED))
return -EINVAL;
vm_flags_set(vma, VM_IO | VM_PFNMAP);
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
vma->vm_ops = &spufs_mss_mmap_vmops;
return 0;
}
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
static int spufs_mss_open(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
file->private_data = i->i_ctx;
mutex_lock(&ctx->mapping_lock);
if (!i->i_openers++)
ctx->mss = inode->i_mapping;
mutex_unlock(&ctx->mapping_lock);
return nonseekable_open(inode, file);
}
static int
spufs_mss_release(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
mutex_lock(&ctx->mapping_lock);
if (!--i->i_openers)
ctx->mss = NULL;
mutex_unlock(&ctx->mapping_lock);
return 0;
}
static const struct file_operations spufs_mss_fops = {
.open = spufs_mss_open,
.release = spufs_mss_release,
.mmap = spufs_mss_mmap,
};
static vm_fault_t
spufs_psmap_mmap_fault(struct vm_fault *vmf)
{
return spufs_ps_fault(vmf, 0x0000, SPUFS_PS_MAP_SIZE);
}
static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
.fault = spufs_psmap_mmap_fault,
};
/*
* mmap support for full problem state area [0x00000 - 0x1ffff].
*/
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
if (!(vma->vm_flags & VM_SHARED))
return -EINVAL;
vm_flags_set(vma, VM_IO | VM_PFNMAP);
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
vma->vm_ops = &spufs_psmap_mmap_vmops;
return 0;
}
static int spufs_psmap_open(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
mutex_lock(&ctx->mapping_lock);
file->private_data = i->i_ctx;
if (!i->i_openers++)
ctx->psmap = inode->i_mapping;
mutex_unlock(&ctx->mapping_lock);
return nonseekable_open(inode, file);
}
static int
spufs_psmap_release(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
mutex_lock(&ctx->mapping_lock);
if (!--i->i_openers)
ctx->psmap = NULL;
mutex_unlock(&ctx->mapping_lock);
return 0;
}
static const struct file_operations spufs_psmap_fops = {
.open = spufs_psmap_open,
.release = spufs_psmap_release,
.mmap = spufs_psmap_mmap,
};
#if SPUFS_MMAP_4K
static vm_fault_t
spufs_mfc_mmap_fault(struct vm_fault *vmf)
{
return spufs_ps_fault(vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
}
static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
.fault = spufs_mfc_mmap_fault,
};
/*
* mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
*/
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
if (!(vma->vm_flags & VM_SHARED))
return -EINVAL;
vm_flags_set(vma, VM_IO | VM_PFNMAP);
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
vma->vm_ops = &spufs_mfc_mmap_vmops;
return 0;
}
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
static int spufs_mfc_open(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
/* we don't want to deal with DMA into other processes */
if (ctx->owner != current->mm)
return -EINVAL;
if (atomic_read(&inode->i_count) != 1)
return -EBUSY;
mutex_lock(&ctx->mapping_lock);
file->private_data = ctx;
if (!i->i_openers++)
ctx->mfc = inode->i_mapping;
mutex_unlock(&ctx->mapping_lock);
return nonseekable_open(inode, file);
}
static int
spufs_mfc_release(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
mutex_lock(&ctx->mapping_lock);
if (!--i->i_openers)
ctx->mfc = NULL;
mutex_unlock(&ctx->mapping_lock);
return 0;
}
/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
struct spu_context *ctx = spu->ctx;
if (ctx)
wake_up_all(&ctx->mfc_wq);
}
static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
/* See if there is one tag group is complete */
/* FIXME we need locking around tagwait */
*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
ctx->tagwait &= ~*status;
if (*status)
return 1;
/* enable interrupt waiting for any tag group,
may silently fail if interrupts are already enabled */
ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
return 0;
}
static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
size_t size, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
int ret = -EINVAL;
u32 status;
if (size != 4)
goto out;
ret = spu_acquire(ctx);
if (ret)
return ret;
ret = -EINVAL;
if (file->f_flags & O_NONBLOCK) {
status = ctx->ops->read_mfc_tagstatus(ctx);
if (!(status & ctx->tagwait))
ret = -EAGAIN;
else
/* XXX(hch): shouldn't we clear ret here? */
ctx->tagwait &= ~status;
} else {
ret = spufs_wait(ctx->mfc_wq,
spufs_read_mfc_tagstatus(ctx, &status));
if (ret)
goto out;
}
spu_release(ctx);
ret = 4;
if (copy_to_user(buffer, &status, 4))
ret = -EFAULT;
out:
return ret;
}
static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
cmd->ea, cmd->size, cmd->tag, cmd->cmd);
switch (cmd->cmd) {
case MFC_PUT_CMD:
case MFC_PUTF_CMD:
case MFC_PUTB_CMD:
case MFC_GET_CMD:
case MFC_GETF_CMD:
case MFC_GETB_CMD:
break;
default:
pr_debug("invalid DMA opcode %x\n", cmd->cmd);
return -EIO;
}
if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
cmd->ea, cmd->lsa);
return -EIO;
}
switch (cmd->size & 0xf) {
case 1:
break;
case 2:
if (cmd->lsa & 1)
goto error;
break;
case 4:
if (cmd->lsa & 3)
goto error;
break;
case 8:
if (cmd->lsa & 7)
goto error;
break;
case 0:
if (cmd->lsa & 15)
goto error;
break;
error:
default:
pr_debug("invalid DMA alignment %x for size %x\n",
cmd->lsa & 0xf, cmd->size);
return -EIO;
}
if (cmd->size > 16 * 1024) {
pr_debug("invalid DMA size %x\n", cmd->size);
return -EIO;
}
if (cmd->tag & 0xfff0) {
/* we reserve the higher tag numbers for kernel use */
pr_debug("invalid DMA tag\n");
return -EIO;
}
if (cmd->class) {
/* not supported in this version */
pr_debug("invalid DMA class\n");
return -EIO;
}
return 0;
}
static int spu_send_mfc_command(struct spu_context *ctx,
struct mfc_dma_command cmd,
int *error)
{
*error = ctx->ops->send_mfc_command(ctx, &cmd);
if (*error == -EAGAIN) {
/* wait for any tag group to complete
so we have space for the new command */
ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
/* try again, because the queue might be
empty again */
*error = ctx->ops->send_mfc_command(ctx, &cmd);
if (*error == -EAGAIN)
return 0;
}
return 1;
}
static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
size_t size, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
struct mfc_dma_command cmd;
int ret = -EINVAL;
if (size != sizeof cmd)
goto out;
ret = -EFAULT;
if (copy_from_user(&cmd, buffer, sizeof cmd))
goto out;
ret = spufs_check_valid_dma(&cmd);
if (ret)
goto out;
ret = spu_acquire(ctx);
if (ret)
goto out;
ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
if (ret)
goto out;
if (file->f_flags & O_NONBLOCK) {
ret = ctx->ops->send_mfc_command(ctx, &cmd);
} else {
int status;
ret = spufs_wait(ctx->mfc_wq,
spu_send_mfc_command(ctx, cmd, &status));
if (ret)
goto out;
if (status)
ret = status;
}
if (ret)
goto out_unlock;
ctx->tagwait |= 1 << cmd.tag;
ret = size;
out_unlock:
spu_release(ctx);
out:
return ret;
}
static __poll_t spufs_mfc_poll(struct file *file,poll_table *wait)
{
struct spu_context *ctx = file->private_data;
u32 free_elements, tagstatus;
__poll_t mask;
poll_wait(file, &ctx->mfc_wq, wait);
/*
* For now keep this uninterruptible and also ignore the rule
* that poll should not sleep. Will be fixed later.
*/
mutex_lock(&ctx->state_mutex);
ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
free_elements = ctx->ops->get_mfc_free_elements(ctx);
tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
spu_release(ctx);
mask = 0;
if (free_elements & 0xffff)
mask |= EPOLLOUT | EPOLLWRNORM;
if (tagstatus & ctx->tagwait)
mask |= EPOLLIN | EPOLLRDNORM;
pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
free_elements, tagstatus, ctx->tagwait);
return mask;
}
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
{
struct spu_context *ctx = file->private_data;
int ret;
ret = spu_acquire(ctx);
if (ret)
goto out;
#if 0
/* this currently hangs */
ret = spufs_wait(ctx->mfc_wq,
ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
if (ret)
goto out;
ret = spufs_wait(ctx->mfc_wq,
ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
if (ret)
goto out;
#else
ret = 0;
#endif
spu_release(ctx);
out:
return ret;
}
static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync)
{
struct inode *inode = file_inode(file);
int err = file_write_and_wait_range(file, start, end);
if (!err) {
inode_lock(inode);
err = spufs_mfc_flush(file, NULL);
inode_unlock(inode);
}
return err;
}
static const struct file_operations spufs_mfc_fops = {
.open = spufs_mfc_open,
.release = spufs_mfc_release,
.read = spufs_mfc_read,
.write = spufs_mfc_write,
.poll = spufs_mfc_poll,
.flush = spufs_mfc_flush,
.fsync = spufs_mfc_fsync,
.mmap = spufs_mfc_mmap,
};
static int spufs_npc_set(void *data, u64 val)
{
struct spu_context *ctx = data;
int ret;
ret = spu_acquire(ctx);
if (ret)
return ret;
ctx->ops->npc_write(ctx, val);
spu_release(ctx);
return 0;
}
static u64 spufs_npc_get(struct spu_context *ctx)
{
return ctx->ops->npc_read(ctx);
}
DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
"0x%llx\n", SPU_ATTR_ACQUIRE);
static int spufs_decr_set(void *data, u64 val)
{
struct spu_context *ctx = data;
struct spu_lscsa *lscsa = ctx->csa.lscsa;
int ret;
ret = spu_acquire_saved(ctx);
if (ret)
return ret;
lscsa->decr.slot[0] = (u32) val;
spu_release_saved(ctx);
return 0;
}
static u64 spufs_decr_get(struct spu_context *ctx)
{
struct spu_lscsa *lscsa = ctx->csa.lscsa;
return lscsa->decr.slot[0];
}
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
"0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
static int spufs_decr_status_set(void *data, u64 val)
{
struct spu_context *ctx = data;
int ret;
ret = spu_acquire_saved(ctx);
if (ret)
return ret;
if (val)
ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
else
ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
spu_release_saved(ctx);
return 0;
}
static u64 spufs_decr_status_get(struct spu_context *ctx)
{
if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
return SPU_DECR_STATUS_RUNNING;
else
return 0;
}
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
spufs_decr_status_set, "0x%llx\n",
SPU_ATTR_ACQUIRE_SAVED);
static int spufs_event_mask_set(void *data, u64 val)
{
struct spu_context *ctx = data;
struct spu_lscsa *lscsa = ctx->csa.lscsa;
int ret;
ret = spu_acquire_saved(ctx);
if (ret)
return ret;
lscsa->event_mask.slot[0] = (u32) val;
spu_release_saved(ctx);
return 0;
}
static u64 spufs_event_mask_get(struct spu_context *ctx)
{
struct spu_lscsa *lscsa = ctx->csa.lscsa;
return lscsa->event_mask.slot[0];
}
DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
spufs_event_mask_set, "0x%llx\n",
SPU_ATTR_ACQUIRE_SAVED);
static u64 spufs_event_status_get(struct spu_context *ctx)
{
struct spu_state *state = &ctx->csa;
u64 stat;
stat = state->spu_chnlcnt_RW[0];
if (stat)
return state->spu_chnldata_RW[0];
return 0;
}
DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
static int spufs_srr0_set(void *data, u64 val)
{
struct spu_context *ctx = data;
struct spu_lscsa *lscsa = ctx->csa.lscsa;
int ret;
ret = spu_acquire_saved(ctx);
if (ret)
return ret;
lscsa->srr0.slot[0] = (u32) val;
spu_release_saved(ctx);
return 0;
}
static u64 spufs_srr0_get(struct spu_context *ctx)
{
struct spu_lscsa *lscsa = ctx->csa.lscsa;
return lscsa->srr0.slot[0];
}
DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
"0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
static u64 spufs_id_get(struct spu_context *ctx)
{
u64 num;
if (ctx->state == SPU_STATE_RUNNABLE)
num = ctx->spu->number;
else
num = (unsigned int)-1;
return num;
}
DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
SPU_ATTR_ACQUIRE)
static u64 spufs_object_id_get(struct spu_context *ctx)
{
/* FIXME: Should there really be no locking here? */
return ctx->object_id;
}
static int spufs_object_id_set(void *data, u64 id)
{
struct spu_context *ctx = data;
ctx->object_id = id;
return 0;
}
DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
static u64 spufs_lslr_get(struct spu_context *ctx)
{
return ctx->csa.priv2.spu_lslr_RW;
}
DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
SPU_ATTR_ACQUIRE_SAVED);
static int spufs_info_open(struct inode *inode, struct file *file)
{
struct spufs_inode_info *i = SPUFS_I(inode);
struct spu_context *ctx = i->i_ctx;
file->private_data = ctx;
return 0;
}
static int spufs_caps_show(struct seq_file *s, void *private)
{
struct spu_context *ctx = s->private;
if (!(ctx->flags & SPU_CREATE_NOSCHED))
seq_puts(s, "sched\n");
if (!(ctx->flags & SPU_CREATE_ISOLATE))
seq_puts(s, "step\n");
return 0;
}
static int spufs_caps_open(struct inode *inode, struct file *file)
{
return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
}
static const struct file_operations spufs_caps_fops = {
.open = spufs_caps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static ssize_t spufs_mbox_info_dump(struct spu_context *ctx,
struct coredump_params *cprm)
{
if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
return 0;
return spufs_dump_emit(cprm, &ctx->csa.prob.pu_mb_R,
sizeof(ctx->csa.prob.pu_mb_R));
}
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
u32 stat, data;
int ret;
ret = spu_acquire_saved(ctx);
if (ret)
return ret;
spin_lock(&ctx->csa.register_lock);
stat = ctx->csa.prob.mb_stat_R;
data = ctx->csa.prob.pu_mb_R;
spin_unlock(&ctx->csa.register_lock);
spu_release_saved(ctx);
/* EOF if there's no entry in the mbox */
if (!(stat & 0x0000ff))
return 0;
return simple_read_from_buffer(buf, len, pos, &data, sizeof(data));
}
static const struct file_operations spufs_mbox_info_fops = {
.open = spufs_info_open,
.read = spufs_mbox_info_read,
.llseek = generic_file_llseek,
};
static ssize_t spufs_ibox_info_dump(struct spu_context *ctx,
struct coredump_params *cprm)
{
if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
return 0;
return spufs_dump_emit(cprm, &ctx->csa.priv2.puint_mb_R,
sizeof(ctx->csa.priv2.puint_mb_R));
}
static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
u32 stat, data;
int ret;
ret = spu_acquire_saved(ctx);
if (ret)
return ret;
spin_lock(&ctx->csa.register_lock);
stat = ctx->csa.prob.mb_stat_R;
data = ctx->csa.priv2.puint_mb_R;
spin_unlock(&ctx->csa.register_lock);
spu_release_saved(ctx);
/* EOF if there's no entry in the ibox */
if (!(stat & 0xff0000))
return 0;
return simple_read_from_buffer(buf, len, pos, &data, sizeof(data));
}
static const struct file_operations spufs_ibox_info_fops = {
.open = spufs_info_open,
.read = spufs_ibox_info_read,
.llseek = generic_file_llseek,
};
static size_t spufs_wbox_info_cnt(struct spu_context *ctx)
{
return (4 - ((ctx->csa.prob.mb_stat_R & 0x00ff00) >> 8)) * sizeof(u32);
}
static ssize_t spufs_wbox_info_dump(struct spu_context *ctx,
struct coredump_params *cprm)
{
return spufs_dump_emit(cprm, &ctx->csa.spu_mailbox_data,
spufs_wbox_info_cnt(ctx));
}
static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
u32 data[ARRAY_SIZE(ctx->csa.spu_mailbox_data)];
int ret, count;
ret = spu_acquire_saved(ctx);
if (ret)
return ret;
spin_lock(&ctx->csa.register_lock);
count = spufs_wbox_info_cnt(ctx);
memcpy(&data, &ctx->csa.spu_mailbox_data, sizeof(data));
spin_unlock(&ctx->csa.register_lock);
spu_release_saved(ctx);
return simple_read_from_buffer(buf, len, pos, &data,
count * sizeof(u32));
}
static const struct file_operations spufs_wbox_info_fops = {
.open = spufs_info_open,
.read = spufs_wbox_info_read,
.llseek = generic_file_llseek,
};
static void spufs_get_dma_info(struct spu_context *ctx,
struct spu_dma_info *info)
{
int i;
info->dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
info->dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
info->dma_info_status = ctx->csa.spu_chnldata_RW[24];
info->dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
info->dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
for (i = 0; i < 16; i++) {
struct mfc_cq_sr *qp = &info->dma_info_command_data[i];
struct mfc_cq_sr *spuqp = &ctx->csa.priv2.spuq[i];
qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
}
}
static ssize_t spufs_dma_info_dump(struct spu_context *ctx,
struct coredump_params *cprm)
{
struct spu_dma_info info;
spufs_get_dma_info(ctx, &info);
return spufs_dump_emit(cprm, &info, sizeof(info));
}
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
struct spu_dma_info info;
int ret;
ret = spu_acquire_saved(ctx);
if (ret)
return ret;
spin_lock(&ctx->csa.register_lock);
spufs_get_dma_info(ctx, &info);
spin_unlock(&ctx->csa.register_lock);
spu_release_saved(ctx);
return simple_read_from_buffer(buf, len, pos, &info,
sizeof(info));
}
static const struct file_operations spufs_dma_info_fops = {
.open = spufs_info_open,
.read = spufs_dma_info_read,
};
static void spufs_get_proxydma_info(struct spu_context *ctx,
struct spu_proxydma_info *info)
{
int i;
info->proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
info->proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
info->proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
for (i = 0; i < 8; i++) {
struct mfc_cq_sr *qp = &info->proxydma_info_command_data[i];
struct mfc_cq_sr *puqp = &ctx->csa.priv2.puq[i];
qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
}
}
static ssize_t spufs_proxydma_info_dump(struct spu_context *ctx,
struct coredump_params *cprm)
{
struct spu_proxydma_info info;
spufs_get_proxydma_info(ctx, &info);
return spufs_dump_emit(cprm, &info, sizeof(info));
}
static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
size_t len, loff_t *pos)
{
struct spu_context *ctx = file->private_data;
struct spu_proxydma_info info;
int ret;
if (len < sizeof(info))
return -EINVAL;
ret = spu_acquire_saved(ctx);
if (ret)
return ret;
spin_lock(&ctx->csa.register_lock);
spufs_get_proxydma_info(ctx, &info);
spin_unlock(&ctx->csa.register_lock);
spu_release_saved(ctx);
return simple_read_from_buffer(buf, len, pos, &info,
sizeof(info));
}
static const struct file_operations spufs_proxydma_info_fops = {
.open = spufs_info_open,
.read = spufs_proxydma_info_read,
};
static int spufs_show_tid(struct seq_file *s, void *private)
{
struct spu_context *ctx = s->private;
seq_printf(s, "%d\n", ctx->tid);
return 0;
}
static int spufs_tid_open(struct inode *inode, struct file *file)
{
return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
}
static const struct file_operations spufs_tid_fops = {
.open = spufs_tid_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const char *ctx_state_names[] = {
"user", "system", "iowait", "loaded"
};
static unsigned long long spufs_acct_time(struct spu_context *ctx,
enum spu_utilization_state state)
{
unsigned long long time = ctx->stats.times[state];
/*
* In general, utilization statistics are updated by the controlling
* thread as the spu context moves through various well defined
* state transitions, but if the context is lazily loaded its
* utilization statistics are not updated as the controlling thread
* is not tightly coupled with the execution of the spu context. We
* calculate and apply the time delta from the last recorded state
* of the spu context.
*/
if (ctx->spu && ctx->stats.util_state == state) {
time += ktime_get_ns() - ctx->stats.tstamp;
}
return time / NSEC_PER_MSEC;
}
static unsigned long long spufs_slb_flts(struct spu_context *ctx)
{
unsigned long long slb_flts = ctx->stats.slb_flt;
if (ctx->state == SPU_STATE_RUNNABLE) {
slb_flts += (ctx->spu->stats.slb_flt -
ctx->stats.slb_flt_base);
}
return slb_flts;
}
static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
{
unsigned long long class2_intrs = ctx->stats.class2_intr;
if (ctx->state == SPU_STATE_RUNNABLE) {
class2_intrs += (ctx->spu->stats.class2_intr -
ctx->stats.class2_intr_base);
}
return class2_intrs;
}
static int spufs_show_stat(struct seq_file *s, void *private)
{
struct spu_context *ctx = s->private;
int ret;
ret = spu_acquire(ctx);
if (ret)
return ret;
seq_printf(s, "%s %llu %llu %llu %llu "
"%llu %llu %llu %llu %llu %llu %llu %llu\n",
ctx_state_names[ctx->stats.util_state],
spufs_acct_time(ctx, SPU_UTIL_USER),
spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
ctx->stats.vol_ctx_switch,
ctx->stats.invol_ctx_switch,
spufs_slb_flts(ctx),
ctx->stats.hash_flt,
ctx->stats.min_flt,
ctx->stats.maj_flt,
spufs_class2_intrs(ctx),
ctx->stats.libassist);
spu_release(ctx);
return 0;
}
static int spufs_stat_open(struct inode *inode, struct file *file)
{
return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
}
static const struct file_operations spufs_stat_fops = {
.open = spufs_stat_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static inline int spufs_switch_log_used(struct spu_context *ctx)
{
return (ctx->switch_log->head - ctx->switch_log->tail) %
SWITCH_LOG_BUFSIZE;
}
static inline int spufs_switch_log_avail(struct spu_context *ctx)
{
return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
}
static int spufs_switch_log_open(struct inode *inode, struct file *file)
{
struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
int rc;
rc = spu_acquire(ctx);
if (rc)
return rc;
if (ctx->switch_log) {
rc = -EBUSY;
goto out;
}
ctx->switch_log = kmalloc(struct_size(ctx->switch_log, log,
SWITCH_LOG_BUFSIZE), GFP_KERNEL);
if (!ctx->switch_log) {
rc = -ENOMEM;
goto out;
}
ctx->switch_log->head = ctx->switch_log->tail = 0;
init_waitqueue_head(&ctx->switch_log->wait);
rc = 0;
out:
spu_release(ctx);
return rc;
}
static int spufs_switch_log_release(struct inode *inode, struct file *file)
{
struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
int rc;
rc = spu_acquire(ctx);
if (rc)
return rc;
kfree(ctx->switch_log);
ctx->switch_log = NULL;
spu_release(ctx);
return 0;
}
static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
{
struct switch_log_entry *p;
p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
return snprintf(tbuf, n, "%llu.%09u %d %u %u %llu\n",
(unsigned long long) p->tstamp.tv_sec,
(unsigned int) p->tstamp.tv_nsec,
p->spu_id,
(unsigned int) p->type,
(unsigned int) p->val,
(unsigned long long) p->timebase);
}
static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
size_t len, loff_t *ppos)
{
struct inode *inode = file_inode(file);
struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
int error = 0, cnt = 0;
if (!buf)
return -EINVAL;
error = spu_acquire(ctx);
if (error)
return error;
while (cnt < len) {
char tbuf[128];
int width;
if (spufs_switch_log_used(ctx) == 0) {
if (cnt > 0) {
/* If there's data ready to go, we can
* just return straight away */
break;
} else if (file->f_flags & O_NONBLOCK) {
error = -EAGAIN;
break;
} else {
/* spufs_wait will drop the mutex and
* re-acquire, but since we're in read(), the
* file cannot be _released (and so
* ctx->switch_log is stable).
*/
error = spufs_wait(ctx->switch_log->wait,
spufs_switch_log_used(ctx) > 0);
/* On error, spufs_wait returns without the
* state mutex held */
if (error)
return error;
/* We may have had entries read from underneath
* us while we dropped the mutex in spufs_wait,
* so re-check */
if (spufs_switch_log_used(ctx) == 0)
continue;
}
}
width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
if (width < len)
ctx->switch_log->tail =
(ctx->switch_log->tail + 1) %
SWITCH_LOG_BUFSIZE;
else
/* If the record is greater than space available return
* partial buffer (so far) */
break;
error = copy_to_user(buf + cnt, tbuf, width);
if (error)
break;
cnt += width;
}
spu_release(ctx);
return cnt == 0 ? error : cnt;
}
static __poll_t spufs_switch_log_poll(struct file *file, poll_table *wait)
{
struct inode *inode = file_inode(file);
struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
__poll_t mask = 0;
int rc;
poll_wait(file, &ctx->switch_log->wait, wait);
rc = spu_acquire(ctx);
if (rc)
return rc;
if (spufs_switch_log_used(ctx) > 0)
mask |= EPOLLIN;
spu_release(ctx);
return mask;
}
static const struct file_operations spufs_switch_log_fops = {
.open = spufs_switch_log_open,
.read = spufs_switch_log_read,
.poll = spufs_switch_log_poll,
.release = spufs_switch_log_release,
};
/**
* Log a context switch event to a switch log reader.
*
* Must be called with ctx->state_mutex held.
*/
void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
u32 type, u32 val)
{
if (!ctx->switch_log)
return;
if (spufs_switch_log_avail(ctx) > 1) {
struct switch_log_entry *p;
p = ctx->switch_log->log + ctx->switch_log->head;
ktime_get_ts64(&p->tstamp);
p->timebase = get_tb();
p->spu_id = spu ? spu->number : -1;
p->type = type;
p->val = val;
ctx->switch_log->head =
(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
}
wake_up(&ctx->switch_log->wait);
}
static int spufs_show_ctx(struct seq_file *s, void *private)
{
struct spu_context *ctx = s->private;
u64 mfc_control_RW;
mutex_lock(&ctx->state_mutex);
if (ctx->spu) {
struct spu *spu = ctx->spu;
struct spu_priv2 __iomem *priv2 = spu->priv2;
spin_lock_irq(&spu->register_lock);
mfc_control_RW = in_be64(&priv2->mfc_control_RW);
spin_unlock_irq(&spu->register_lock);
} else {
struct spu_state *csa = &ctx->csa;
mfc_control_RW = csa->priv2.mfc_control_RW;
}
seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
" %c %llx %llx %llx %llx %x %x\n",
ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
ctx->flags,
ctx->sched_flags,
ctx->prio,
ctx->time_slice,
ctx->spu ? ctx->spu->number : -1,
!list_empty(&ctx->rq) ? 'q' : ' ',
ctx->csa.class_0_pending,
ctx->csa.class_0_dar,
ctx->csa.class_1_dsisr,
mfc_control_RW,
ctx->ops->runcntl_read(ctx),
ctx->ops->status_read(ctx));
mutex_unlock(&ctx->state_mutex);
return 0;
}
static int spufs_ctx_open(struct inode *inode, struct file *file)
{
return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
}
static const struct file_operations spufs_ctx_fops = {
.open = spufs_ctx_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
const struct spufs_tree_descr spufs_dir_contents[] = {
{ "capabilities", &spufs_caps_fops, 0444, },
{ "mem", &spufs_mem_fops, 0666, LS_SIZE, },
{ "regs", &spufs_regs_fops, 0666, sizeof(struct spu_reg128[128]), },
{ "mbox", &spufs_mbox_fops, 0444, },
{ "ibox", &spufs_ibox_fops, 0444, },
{ "wbox", &spufs_wbox_fops, 0222, },
{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
{ "signal1", &spufs_signal1_fops, 0666, },
{ "signal2", &spufs_signal2_fops, 0666, },
{ "signal1_type", &spufs_signal1_type, 0666, },
{ "signal2_type", &spufs_signal2_type, 0666, },
{ "cntl", &spufs_cntl_fops, 0666, },
{ "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
{ "lslr", &spufs_lslr_ops, 0444, },
{ "mfc", &spufs_mfc_fops, 0666, },
{ "mss", &spufs_mss_fops, 0666, },
{ "npc", &spufs_npc_ops, 0666, },
{ "srr0", &spufs_srr0_ops, 0666, },
{ "decr", &spufs_decr_ops, 0666, },
{ "decr_status", &spufs_decr_status_ops, 0666, },
{ "event_mask", &spufs_event_mask_ops, 0666, },
{ "event_status", &spufs_event_status_ops, 0444, },
{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
{ "phys-id", &spufs_id_ops, 0666, },
{ "object-id", &spufs_object_id_ops, 0666, },
{ "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
{ "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
{ "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
{ "dma_info", &spufs_dma_info_fops, 0444,
sizeof(struct spu_dma_info), },
{ "proxydma_info", &spufs_proxydma_info_fops, 0444,
sizeof(struct spu_proxydma_info)},
{ "tid", &spufs_tid_fops, 0444, },
{ "stat", &spufs_stat_fops, 0444, },
{ "switch_log", &spufs_switch_log_fops, 0444 },
{},
};
const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
{ "capabilities", &spufs_caps_fops, 0444, },
{ "mem", &spufs_mem_fops, 0666, LS_SIZE, },
{ "mbox", &spufs_mbox_fops, 0444, },
{ "ibox", &spufs_ibox_fops, 0444, },
{ "wbox", &spufs_wbox_fops, 0222, },
{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
{ "signal1", &spufs_signal1_nosched_fops, 0222, },
{ "signal2", &spufs_signal2_nosched_fops, 0222, },
{ "signal1_type", &spufs_signal1_type, 0666, },
{ "signal2_type", &spufs_signal2_type, 0666, },
{ "mss", &spufs_mss_fops, 0666, },
{ "mfc", &spufs_mfc_fops, 0666, },
{ "cntl", &spufs_cntl_fops, 0666, },
{ "npc", &spufs_npc_ops, 0666, },
{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
{ "phys-id", &spufs_id_ops, 0666, },
{ "object-id", &spufs_object_id_ops, 0666, },
{ "tid", &spufs_tid_fops, 0444, },
{ "stat", &spufs_stat_fops, 0444, },
{},
};
const struct spufs_tree_descr spufs_dir_debug_contents[] = {
{ ".ctx", &spufs_ctx_fops, 0444, },
{},
};
const struct spufs_coredump_reader spufs_coredump_read[] = {
{ "regs", spufs_regs_dump, NULL, sizeof(struct spu_reg128[128])},
{ "fpcr", spufs_fpcr_dump, NULL, sizeof(struct spu_reg128) },
{ "lslr", NULL, spufs_lslr_get, 19 },
{ "decr", NULL, spufs_decr_get, 19 },
{ "decr_status", NULL, spufs_decr_status_get, 19 },
{ "mem", spufs_mem_dump, NULL, LS_SIZE, },
{ "signal1", spufs_signal1_dump, NULL, sizeof(u32) },
{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
{ "signal2", spufs_signal2_dump, NULL, sizeof(u32) },
{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
{ "event_mask", NULL, spufs_event_mask_get, 19 },
{ "event_status", NULL, spufs_event_status_get, 19 },
{ "mbox_info", spufs_mbox_info_dump, NULL, sizeof(u32) },
{ "ibox_info", spufs_ibox_info_dump, NULL, sizeof(u32) },
{ "wbox_info", spufs_wbox_info_dump, NULL, 4 * sizeof(u32)},
{ "dma_info", spufs_dma_info_dump, NULL, sizeof(struct spu_dma_info)},
{ "proxydma_info", spufs_proxydma_info_dump,
NULL, sizeof(struct spu_proxydma_info)},
{ "object-id", NULL, spufs_object_id_get, 19 },
{ "npc", NULL, spufs_npc_get, 19 },
{ NULL },
};