In order to deal with noncoherent DMA, we should execute wbinvd on
all dirty pCPUs when guest wbinvd exits to maintain data consistency.
smp_call_function_many() does not execute the provided function on the
local core, therefore replace it by on_each_cpu_mask().
Reported-by: Nadav Amit <namit@vmware.com>
Cc: Nadav Amit <namit@vmware.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1615517151-7465-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix a plethora of issues with MSR filtering by installing the resulting
filter as an atomic bundle instead of updating the live filter one range
at a time. The KVM_X86_SET_MSR_FILTER ioctl() isn't truly atomic, as
the hardware MSR bitmaps won't be updated until the next VM-Enter, but
the relevant software struct is atomically updated, which is what KVM
really needs.
Similar to the approach used for modifying memslots, make arch.msr_filter
a SRCU-protected pointer, do all the work configuring the new filter
outside of kvm->lock, and then acquire kvm->lock only when the new filter
has been vetted and created. That way vCPU readers either see the old
filter or the new filter in their entirety, not some half-baked state.
Yuan Yao pointed out a use-after-free in ksm_msr_allowed() due to a
TOCTOU bug, but that's just the tip of the iceberg...
- Nothing is __rcu annotated, making it nigh impossible to audit the
code for correctness.
- kvm_add_msr_filter() has an unpaired smp_wmb(). Violation of kernel
coding style aside, the lack of a smb_rmb() anywhere casts all code
into doubt.
- kvm_clear_msr_filter() has a double free TOCTOU bug, as it grabs
count before taking the lock.
- kvm_clear_msr_filter() also has memory leak due to the same TOCTOU bug.
The entire approach of updating the live filter is also flawed. While
installing a new filter is inherently racy if vCPUs are running, fixing
the above issues also makes it trivial to ensure certain behavior is
deterministic, e.g. KVM can provide deterministic behavior for MSRs with
identical settings in the old and new filters. An atomic update of the
filter also prevents KVM from getting into a half-baked state, e.g. if
installing a filter fails, the existing approach would leave the filter
in a half-baked state, having already committed whatever bits of the
filter were already processed.
[*] https://lkml.kernel.org/r/20210312083157.25403-1-yaoyuan0329os@gmail.com
Fixes: 1a155254ff ("KVM: x86: Introduce MSR filtering")
Cc: stable@vger.kernel.org
Cc: Alexander Graf <graf@amazon.com>
Reported-by: Yuan Yao <yaoyuan0329os@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210316184436.2544875-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When guest opts for re-enlightenment notifications upon migration, it is
in its right to assume that TSC page values never change (as they're only
supposed to change upon migration and the host has to keep things as they
are before it receives confirmation from the guest). This is mostly true
until the guest is migrated somewhere. KVM userspace (e.g. QEMU) will
trigger masterclock update by writing to HV_X64_MSR_REFERENCE_TSC, by
calling KVM_SET_CLOCK,... and as TSC value and kvmclock reading drift
apart (even slightly), the update causes TSC page values to change.
The issue at hand is that when Hyper-V is migrated, it uses stale (cached)
TSC page values to compute the difference between its own clocksource
(provided by KVM) and its guests' TSC pages to program synthetic timers
and in some cases, when TSC page is updated, this puts all stimer
expirations in the past. This, in its turn, causes an interrupt storm
and L2 guests not making much forward progress.
Note, KVM doesn't fully implement re-enlightenment notification. Basically,
the support for reenlightenment MSRs is just a stub and userspace is only
expected to expose the feature when TSC scaling on the expected destination
hosts is available. With TSC scaling, no real re-enlightenment is needed
as TSC frequency doesn't change. With TSC scaling becoming ubiquitous, it
likely makes little sense to fully implement re-enlightenment in KVM.
Prevent TSC page from being updated after migration. In case it's not the
guest who's initiating the change and when TSC page is already enabled,
just keep it as it is: TSC value is supposed to be preserved across
migration and TSC frequency can't change with re-enlightenment enabled.
The guest is doomed anyway if any of this is not true.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210316143736.964151-5-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Create an infrastructure for tracking Hyper-V TSC page status, i.e. if it
was updated from guest/host side or if we've failed to set it up (because
e.g. guest wrote some garbage to HV_X64_MSR_REFERENCE_TSC) and there's no
need to retry.
Also, in a hypothetical situation when we are in 'always catchup' mode for
TSC we can now avoid contending 'hv->hv_lock' on every guest enter by
setting the state to HV_TSC_PAGE_BROKEN after compute_tsc_page_parameters()
returns false.
Check for HV_TSC_PAGE_SET state instead of '!hv->tsc_ref.tsc_sequence' in
get_time_ref_counter() to properly handle the situation when we failed to
write the updated TSC page values to the guest.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210316143736.964151-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When KVM_REQ_MASTERCLOCK_UPDATE request is issued (e.g. after migration)
we need to make sure no vCPU sees stale values in PV clock structures and
thus all vCPUs are kicked with KVM_REQ_CLOCK_UPDATE. Hyper-V TSC page
clocksource is global and kvm_guest_time_update() only updates in on vCPU0
but this is not entirely correct: nothing blocks some other vCPU from
entering the guest before we finish the update on CPU0 and it can read
stale values from the page.
Invalidate TSC page in kvm_gen_update_masterclock() to switch all vCPUs
to using MSR based clocksource (HV_X64_MSR_TIME_REF_COUNT).
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210316143736.964151-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
HV_X64_MSR_TSC_EMULATION_STATUS indicates whether TSC accesses are emulated
after migration (to accommodate for a different host TSC frequency when TSC
scaling is not supported; we don't implement this in KVM). Guest can use
the same MSR to stop TSC access emulation by writing zero. Writing anything
else is forbidden.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210316143736.964151-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Store the address space ID in the TDP iterator so that it can be
retrieved without having to bounce through the root shadow page. This
streamlines the code and fixes a Sparse warning about not properly using
rcu_dereference() when grabbing the ID from the root on the fly.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210315233803.2706477-5-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In tdp_mmu_iter_cond_resched there is a call to tdp_iter_start which
causes the iterator to continue its walk over the paging structure from
the root. This is needed after a yield as paging structure could have
been freed in the interim.
The tdp_iter_start call is not very clear and something of a hack. It
requires exposing tdp_iter fields not used elsewhere in tdp_mmu.c and
the effect is not obvious from the function name. Factor a more aptly
named function out of tdp_iter_start and call it from
tdp_mmu_iter_cond_resched and tdp_iter_start.
No functional change intended.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210315233803.2706477-4-bgardon@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The pt passed into handle_removed_tdp_mmu_page does not need RCU
protection, as it is not at any risk of being freed by another thread at
that point. However, the implicit cast from tdp_sptep_t to u64 * dropped
the __rcu annotation without a proper rcu_derefrence. Fix this by
passing the pt as a tdp_ptep_t and then rcu_dereferencing it in
the function.
Suggested-by: Sean Christopherson <seanjc@google.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210315233803.2706477-2-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull perf fixes from Borislav Petkov:
- Make sure PMU internal buffers are flushed for per-CPU events too and
properly handle PID/TID for large PEBS.
- Handle the case properly when there's no PMU and therefore return an
empty list of perf MSRs for VMX to switch instead of reading random
garbage from the stack.
* tag 'perf_urgent_for_v5.12-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/perf: Use RET0 as default for guest_get_msrs to handle "no PMU" case
perf/x86/intel: Set PERF_ATTACH_SCHED_CB for large PEBS and LBR
perf/core: Flush PMU internal buffers for per-CPU events
Pull KVM fixes from Paolo Bonzini:
"More fixes for ARM and x86"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: LAPIC: Advancing the timer expiration on guest initiated write
KVM: x86/mmu: Skip !MMU-present SPTEs when removing SP in exclusive mode
KVM: kvmclock: Fix vCPUs > 64 can't be online/hotpluged
kvm: x86: annotate RCU pointers
KVM: arm64: Fix exclusive limit for IPA size
KVM: arm64: Reject VM creation when the default IPA size is unsupported
KVM: arm64: Ensure I-cache isolation between vcpus of a same VM
KVM: arm64: Don't use cbz/adr with external symbols
KVM: arm64: Fix range alignment when walking page tables
KVM: arm64: Workaround firmware wrongly advertising GICv2-on-v3 compatibility
KVM: arm64: Rename __vgic_v3_get_ich_vtr_el2() to __vgic_v3_get_gic_config()
KVM: arm64: Don't access PMSELR_EL0/PMUSERENR_EL0 when no PMU is available
KVM: arm64: Turn kvm_arm_support_pmu_v3() into a static key
KVM: arm64: Fix nVHE hyp panic host context restore
KVM: arm64: Avoid corrupting vCPU context register in guest exit
KVM: arm64: nvhe: Save the SPE context early
kvm: x86: use NULL instead of using plain integer as pointer
KVM: SVM: Connect 'npt' module param to KVM's internal 'npt_enabled'
KVM: x86: Ensure deadline timer has truly expired before posting its IRQ
If mmu_lock is held for write, don't bother setting !PRESENT SPTEs to
REMOVED_SPTE when recursively zapping SPTEs as part of shadow page
removal. The concurrent write protections provided by REMOVED_SPTE are
not needed, there are no backing page side effects to record, and MMIO
SPTEs can be left as is since they are protected by the memslot
generation, not by ensuring that the MMIO SPTE is unreachable (which
is racy with respect to lockless walks regardless of zapping behavior).
Skipping !PRESENT drastically reduces the number of updates needed to
tear down sparsely populated MMUs, e.g. when tearing down a 6gb VM that
didn't touch much memory, 6929/7168 (~96.6%) of SPTEs were '0' and could
be skipped.
Avoiding the write itself is likely close to a wash, but avoiding
__handle_changed_spte() is a clear-cut win as that involves saving and
restoring all non-volatile GPRs (it's a subtly big function), as well as
several conditional branches before bailing out.
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210310003029.1250571-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Initialize x86_pmu.guest_get_msrs to return 0/NULL to handle the "nop"
case. Patching in perf_guest_get_msrs_nop() during setup does not work
if there is no PMU, as setup bails before updating the static calls,
leaving x86_pmu.guest_get_msrs NULL and thus a complete nop. Ultimately,
this causes VMX abort on VM-Exit due to KVM putting random garbage from
the stack into the MSR load list.
Add a comment in KVM to note that nr_msrs is valid if and only if the
return value is non-NULL.
Fixes: abd562df94 ("x86/perf: Use static_call for x86_pmu.guest_get_msrs")
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reported-by: syzbot+cce9ef2dd25246f815ee@syzkaller.appspotmail.com
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210309171019.1125243-1-seanjc@google.com
Directly connect the 'npt' param to the 'npt_enabled' variable so that
runtime adjustments to npt_enabled are reflected in sysfs. Move the
!PAE restriction to a runtime check to ensure NPT is forced off if the
host is using 2-level paging, and add a comment explicitly stating why
NPT requires a 64-bit kernel or a kernel with PAE enabled.
Opportunistically switch the param to octal permissions.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305021637.3768573-1-seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When posting a deadline timer interrupt, open code the checks guarding
__kvm_wait_lapic_expire() in order to skip the lapic_timer_int_injected()
check in kvm_wait_lapic_expire(). The injection check will always fail
since the interrupt has not yet be injected. Moving the call after
injection would also be wrong as that wouldn't actually delay delivery
of the IRQ if it is indeed sent via posted interrupt.
Fixes: 010fd37fdd ("KVM: LAPIC: Reduce world switch latency caused by timer_advance_ns")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305021808.3769732-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull KVM fixes from Paolo Bonzini:
- Doc fixes
- selftests fixes
- Add runstate information to the new Xen support
- Allow compiling out the Xen interface
- 32-bit PAE without EPT bugfix
- NULL pointer dereference bugfix
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: SVM: Clear the CR4 register on reset
KVM: x86/xen: Add support for vCPU runstate information
KVM: x86/xen: Fix return code when clearing vcpu_info and vcpu_time_info
selftests: kvm: Mmap the entire vcpu mmap area
KVM: Documentation: Fix index for KVM_CAP_PPC_DAWR1
KVM: x86: allow compiling out the Xen hypercall interface
KVM: xen: flush deferred static key before checking it
KVM: x86/mmu: Set SPTE_AD_WRPROT_ONLY_MASK if and only if PML is enabled
KVM: x86: hyper-v: Fix Hyper-V context null-ptr-deref
KVM: x86: remove misplaced comment on active_mmu_pages
KVM: Documentation: rectify rst markup in kvm_run->flags
Documentation: kvm: fix messy conversion from .txt to .rst
This problem was reported on a SVM guest while executing kexec.
Kexec fails to load the new kernel when the PCID feature is enabled.
When kexec starts loading the new kernel, it starts the process by
resetting the vCPU's and then bringing each vCPU online one by one.
The vCPU reset is supposed to reset all the register states before the
vCPUs are brought online. However, the CR4 register is not reset during
this process. If this register is already setup during the last boot,
all the flags can remain intact. The X86_CR4_PCIDE bit can only be
enabled in long mode. So, it must be enabled much later in SMP
initialization. Having the X86_CR4_PCIDE bit set during SMP boot can
cause a boot failures.
Fix the issue by resetting the CR4 register in init_vmcb().
Signed-off-by: Babu Moger <babu.moger@amd.com>
Message-Id: <161471109108.30811.6392805173629704166.stgit@bmoger-ubuntu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is how Xen guests do steal time accounting. The hypervisor records
the amount of time spent in each of running/runnable/blocked/offline
states.
In the Xen accounting, a vCPU is still in state RUNSTATE_running while
in Xen for a hypercall or I/O trap, etc. Only if Xen explicitly schedules
does the state become RUNSTATE_blocked. In KVM this means that even when
the vCPU exits the kvm_run loop, the state remains RUNSTATE_running.
The VMM can explicitly set the vCPU to RUNSTATE_blocked by using the
KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT attribute, and can also use
KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST to retrospectively add a given
amount of time to the blocked state and subtract it from the running
state.
The state_entry_time corresponds to get_kvmclock_ns() at the time the
vCPU entered the current state, and the total times of all four states
should always add up to state_entry_time.
Co-developed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20210301125309.874953-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When clearing the per-vCPU shared regions, set the return value to zero
to indicate success. This was causing spurious errors to be returned to
userspace on soft reset.
Also add a paranoid BUILD_BUG_ON() for compat structure compatibility.
Fixes: 0c165b3c01 ("KVM: x86/xen: Allow reset of Xen attributes")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20210301125309.874953-1-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The Xen hypercall interface adds to the attack surface of the hypervisor
and will be used quite rarely. Allow compiling it out.
Suggested-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull more KVM updates from Paolo Bonzini:
"x86:
- take into account HVA before retrying on MMU notifier race
- fixes for nested AMD guests without NPT
- allow INVPCID in guest without PCID
- disable PML in hardware when not in use
- MMU code cleanups:
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (28 commits)
KVM: SVM: Fix nested VM-Exit on #GP interception handling
KVM: vmx/pmu: Fix dummy check if lbr_desc->event is created
KVM: x86/mmu: Consider the hva in mmu_notifier retry
KVM: x86/mmu: Skip mmu_notifier check when handling MMIO page fault
KVM: Documentation: rectify rst markup in KVM_GET_SUPPORTED_HV_CPUID
KVM: nSVM: prepare guest save area while is_guest_mode is true
KVM: x86/mmu: Remove a variety of unnecessary exports
KVM: x86: Fold "write-protect large" use case into generic write-protect
KVM: x86/mmu: Don't set dirty bits when disabling dirty logging w/ PML
KVM: VMX: Dynamically enable/disable PML based on memslot dirty logging
KVM: x86: Further clarify the logic and comments for toggling log dirty
KVM: x86: Move MMU's PML logic to common code
KVM: x86/mmu: Make dirty log size hook (PML) a value, not a function
KVM: x86/mmu: Expand on the comment in kvm_vcpu_ad_need_write_protect()
KVM: nVMX: Disable PML in hardware when running L2
KVM: x86/mmu: Consult max mapping level when zapping collapsible SPTEs
KVM: x86/mmu: Pass the memslot to the rmap callbacks
KVM: x86/mmu: Split out max mapping level calculation to helper
KVM: x86/mmu: Expand collapsible SPTE zap for TDP MMU to ZONE_DEVICE and HugeTLB pages
KVM: nVMX: no need to undo inject_page_fault change on nested vmexit
...
A missing flush would cause the static branch to trigger incorrectly.
Cc: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Check that PML is actually enabled before setting the mask to force a
SPTE to be write-protected. The bits used for the !AD_ENABLED case are
in the upper half of the SPTE. With 64-bit paging and EPT, these bits
are ignored, but with 32-bit PAE paging they are reserved. Setting them
for L2 SPTEs without checking PML breaks NPT on 32-bit KVM.
Fixes: 1f4e5fc83a ("KVM: x86: fix nested guest live migration with PML")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix the interpreation of nested_svm_vmexit()'s return value when
synthesizing a nested VM-Exit after intercepting an SVM instruction while
L2 was running. The helper returns '0' on success, whereas a return
value of '0' in the exit handler path means "exit to userspace". The
incorrect return value causes KVM to exit to userspace without filling
the run state, e.g. QEMU logs "KVM: unknown exit, hardware reason 0".
Fixes: 14c2bf81fc ("KVM: SVM: Fix #GP handling for doubly-nested virtualization")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210224005627.657028-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If lbr_desc->event is successfully created, the intel_pmu_create_
guest_lbr_event() will return 0, otherwise it will return -ENOENT,
and then jump to LBR msrs dummy handling.
Fixes: 1b5ac3226a ("KVM: vmx/pmu: Pass-through LBR msrs when the guest LBR event is ACTIVE")
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Message-Id: <20210223013958.1280444-1-like.xu@linux.intel.com>
[Add "< 0" and PTR_ERR to make the code clearer. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Track the range being invalidated by mmu_notifier and skip page fault
retries if the fault address is not affected by the in-progress
invalidation. Handle concurrent invalidations by finding the minimal
range which includes all ranges being invalidated. Although the combined
range may include unrelated addresses and cannot be shrunk as individual
invalidation operations complete, it is unlikely the marginal gains of
proper range tracking are worth the additional complexity.
The primary benefit of this change is the reduction in the likelihood of
extreme latency when handing a page fault due to another thread having
been preempted while modifying host virtual addresses.
Signed-off-by: David Stevens <stevensd@chromium.org>
Message-Id: <20210222024522.1751719-3-stevensd@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't retry a page fault due to an mmu_notifier invalidation when
handling a page fault for a GPA that did not resolve to a memslot, i.e.
an MMIO page fault. Invalidations from the mmu_notifier signal a change
in a host virtual address (HVA) mapping; without a memslot, there is no
HVA and thus no possibility that the invalidation is relevant to the
page fault being handled.
Note, the MMIO vs. memslot generation checks handle the case where a
pending memslot will create a memslot overlapping the faulting GPA. The
mmu_notifier checks are orthogonal to memslot updates.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210222024522.1751719-2-stevensd@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Right now, enter_svm_guest_mode is calling nested_prepare_vmcb_save and
nested_prepare_vmcb_control. This results in is_guest_mode being false
until the end of nested_prepare_vmcb_control.
This is a problem because nested_prepare_vmcb_save can in turn cause
changes to the intercepts and these have to be applied to the "host VMCB"
(stored in svm->nested.hsave) and then merged with the VMCB12 intercepts
into svm->vmcb.
In particular, without this change we forget to set the CR0 read and CR0
write intercepts when running a real mode L2 guest with NPT disabled.
The guest is therefore able to see the CR0.PG bit that KVM sets to
enable "paged real mode". This patch fixes the svm.flat mode_switch
test case with npt=0. There are no other problematic calls in
nested_prepare_vmcb_save.
Moving is_guest_mode to the end is done since commit 06fc777269
("KVM: SVM: Activate nested state only when guest state is complete",
2010-04-25). However, back then KVM didn't grab a different VMCB
when updating the intercepts, it had already copied/merged L1's stuff
to L0's VMCB, and then updated L0's VMCB regardless of is_nested().
Later recalc_intercepts was introduced in commit 384c636843
("KVM: SVM: Add function to recalculate intercept masks", 2011-01-12).
This introduced the bug, because recalc_intercepts now throws away
the intercept manipulations that svm_set_cr0 had done in the meanwhile
to svm->vmcb.
[1] https://lore.kernel.org/kvm/1266493115-28386-1-git-send-email-joerg.roedel@amd.com/
Reviewed-by: Sean Christopherson <seanjc@google.com>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull KVM updates from Paolo Bonzini:
"x86:
- Support for userspace to emulate Xen hypercalls
- Raise the maximum number of user memslots
- Scalability improvements for the new MMU.
Instead of the complex "fast page fault" logic that is used in
mmu.c, tdp_mmu.c uses an rwlock so that page faults are concurrent,
but the code that can run against page faults is limited. Right now
only page faults take the lock for reading; in the future this will
be extended to some cases of page table destruction. I hope to
switch the default MMU around 5.12-rc3 (some testing was delayed
due to Chinese New Year).
- Cleanups for MAXPHYADDR checks
- Use static calls for vendor-specific callbacks
- On AMD, use VMLOAD/VMSAVE to save and restore host state
- Stop using deprecated jump label APIs
- Workaround for AMD erratum that made nested virtualization
unreliable
- Support for LBR emulation in the guest
- Support for communicating bus lock vmexits to userspace
- Add support for SEV attestation command
- Miscellaneous cleanups
PPC:
- Support for second data watchpoint on POWER10
- Remove some complex workarounds for buggy early versions of POWER9
- Guest entry/exit fixes
ARM64:
- Make the nVHE EL2 object relocatable
- Cleanups for concurrent translation faults hitting the same page
- Support for the standard TRNG hypervisor call
- A bunch of small PMU/Debug fixes
- Simplification of the early init hypercall handling
Non-KVM changes (with acks):
- Detection of contended rwlocks (implemented only for qrwlocks,
because KVM only needs it for x86)
- Allow __DISABLE_EXPORTS from assembly code
- Provide a saner follow_pfn replacements for modules"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (192 commits)
KVM: x86/xen: Explicitly pad struct compat_vcpu_info to 64 bytes
KVM: selftests: Don't bother mapping GVA for Xen shinfo test
KVM: selftests: Fix hex vs. decimal snafu in Xen test
KVM: selftests: Fix size of memslots created by Xen tests
KVM: selftests: Ignore recently added Xen tests' build output
KVM: selftests: Add missing header file needed by xAPIC IPI tests
KVM: selftests: Add operand to vmsave/vmload/vmrun in svm.c
KVM: SVM: Make symbol 'svm_gp_erratum_intercept' static
locking/arch: Move qrwlock.h include after qspinlock.h
KVM: PPC: Book3S HV: Fix host radix SLB optimisation with hash guests
KVM: PPC: Book3S HV: Ensure radix guest has no SLB entries
KVM: PPC: Don't always report hash MMU capability for P9 < DD2.2
KVM: PPC: Book3S HV: Save and restore FSCR in the P9 path
KVM: PPC: remove unneeded semicolon
KVM: PPC: Book3S HV: Use POWER9 SLBIA IH=6 variant to clear SLB
KVM: PPC: Book3S HV: No need to clear radix host SLB before loading HPT guest
KVM: PPC: Book3S HV: Fix radix guest SLB side channel
KVM: PPC: Book3S HV: Remove support for running HPT guest on RPT host without mixed mode support
KVM: PPC: Book3S HV: Introduce new capability for 2nd DAWR
KVM: PPC: Book3S HV: Add infrastructure to support 2nd DAWR
...
Drop kvm_mmu_slot_largepage_remove_write_access() and refactor its sole
caller to use kvm_mmu_slot_remove_write_access(). Remove the now-unused
slot_handle_large_level() and slot_handle_all_level() helpers.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Stop setting dirty bits for MMU pages when dirty logging is disabled for
a memslot, as PML is now completely disabled when there are no memslots
with dirty logging enabled.
This means that spurious PML entries will be created for memslots with
dirty logging disabled if at least one other memslot has dirty logging
enabled. However, spurious PML entries are already possible since
dirty bits are set only when a dirty logging is turned off, i.e. memslots
that are never dirty logged will have dirty bits cleared.
In the end, it's faster overall to eat a few spurious PML entries in the
window where dirty logging is being disabled across all memslots.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, if enable_pml=1 PML remains enabled for the entire lifetime
of the VM irrespective of whether dirty logging is enable or disabled.
When dirty logging is disabled, all the pages of the VM are manually
marked dirty, so that PML is effectively non-operational. Setting
the dirty bits is an expensive operation which can cause severe MMU
lock contention in a performance sensitive path when dirty logging is
disabled after a failed or canceled live migration.
Manually setting dirty bits also fails to prevent PML activity if some
code path clears dirty bits, which can incur unnecessary VM-Exits.
In order to avoid this extra overhead, dynamically enable/disable PML
when dirty logging gets turned on/off for the first/last memslot.
Signed-off-by: Makarand Sonare <makarandsonare@google.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a sanity check in kvm_mmu_slot_apply_flags to assert that the
LOG_DIRTY_PAGES flag is indeed being toggled, and explicitly rely on
that holding true when zapping collapsible SPTEs. Manipulating the
CPU dirty log (PML) and write-protection also relies on this assertion,
but that's not obvious in the current code.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the facade of KVM's PML logic being vendor specific and move the
bits that aren't truly VMX specific into common x86 code. The MMU logic
for dealing with PML is tightly coupled to the feature and to VMX's
implementation, bouncing through kvm_x86_ops obfuscates the code without
providing any meaningful separation of concerns or encapsulation.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Store the vendor-specific dirty log size in a variable, there's no need
to wrap it in a function since the value is constant after
hardware_setup() runs.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Expand the comment about need to use write-protection for nested EPT
when PML is enabled to clarify that the tagging is a nop when PML is
_not_ enabled. Without the clarification, omitting the PML check looks
wrong at first^Wfifth glance.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unconditionally disable PML in vmcs02, KVM emulates PML purely in the
MMU, e.g. vmx_flush_pml_buffer() doesn't even try to copy the L2 GPAs
from vmcs02's buffer to vmcs12. At best, enabling PML is a nop. At
worst, it will cause vmx_flush_pml_buffer() to record bogus GFNs in the
dirty logs.
Initialize vmcs02.GUEST_PML_INDEX such that PML writes would trigger
VM-Exit if PML was somehow enabled, skip flushing the buffer for guest
mode since the index is bogus, and freak out if a PML full exit occurs
when L2 is active.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When zapping SPTEs in order to rebuild them as huge pages, use the new
helper that computes the max mapping level to detect whether or not a
SPTE should be zapped. Doing so avoids zapping SPTEs that can't
possibly be rebuilt as huge pages, e.g. due to hardware constraints,
memslot alignment, etc...
This also avoids zapping SPTEs that are still large, e.g. if migration
was canceled before write-protected huge pages were shattered to enable
dirty logging. Note, such pages are still write-protected at this time,
i.e. a page fault VM-Exit will still occur. This will hopefully be
addressed in a future patch.
Sadly, TDP MMU loses its const on the memslot, but that's a pervasive
problem that's been around for quite some time.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pass the memslot to the rmap callbacks, it will be used when zapping
collapsible SPTEs to verify the memslot is compatible with hugepages
before zapping its SPTEs.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Factor out the logic for determining the maximum mapping level given a
memslot and a gpa. The helper will be used when zapping collapsible
SPTEs when disabling dirty logging, e.g. to avoid zapping SPTEs that
can't possibly be rebuilt as hugepages.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Zap SPTEs that are backed by ZONE_DEVICE pages when zappings SPTEs to
rebuild them as huge pages in the TDP MMU. ZONE_DEVICE huge pages are
managed differently than "regular" pages and are not compound pages.
Likewise, PageTransCompoundMap() will not detect HugeTLB, so switch
to PageCompound().
This matches the similar check in kvm_mmu_zap_collapsible_spte.
Cc: Ben Gardon <bgardon@google.com>
Fixes: 1488199856 ("kvm: x86/mmu: Support disabling dirty logging for the tdp MMU")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is not needed because the tweak was done on the guest_mmu, while
nested_ept_uninit_mmu_context has just changed vcpu->arch.walk_mmu
back to the root_mmu.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In case of npt=0 on host, nSVM needs the same .inject_page_fault tweak
as VMX has, to make sure that shadow mmu faults are injected as vmexits.
It is not clear why this is needed at all, but for now keep the same
code as VMX and we'll fix it for both.
Based on a patch by Maxim Levitsky <mlevitsk@redhat.com>.
Fixes: 7c86663b68 ("KVM: nSVM: inject exceptions via svm_check_nested_events")
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>