Delay accounting does not track the delay of IRQ/SOFTIRQ. While
IRQ/SOFTIRQ could have obvious impact on some workloads productivity, such
as when workloads are running on system which is busy handling network
IRQ/SOFTIRQ.
Get the delay of IRQ/SOFTIRQ could help users to reduce such delay. Such
as setting interrupt affinity or task affinity, using kernel thread for
NAPI etc. This is inspired by "sched/psi: Add PSI_IRQ to track
IRQ/SOFTIRQ pressure"[1]. Also fix some code indent problems of older
code.
And update tools/accounting/getdelays.c:
/ # ./getdelays -p 156 -di
print delayacct stats ON
printing IO accounting
PID 156
CPU count real total virtual total delay total delay average
15 15836008 16218149 275700790 18.380ms
IO count delay total delay average
0 0 0.000ms
SWAP count delay total delay average
0 0 0.000ms
RECLAIM count delay total delay average
0 0 0.000ms
THRASHING count delay total delay average
0 0 0.000ms
COMPACT count delay total delay average
0 0 0.000ms
WPCOPY count delay total delay average
36 7586118 0.211ms
IRQ count delay total delay average
42 929161 0.022ms
[1] commit 52b1364ba0b1("sched/psi: Add PSI_IRQ to track IRQ/SOFTIRQ pressure")
Link: https://lkml.kernel.org/r/202304081728353557233@zte.com.cn
Signed-off-by: Yang Yang <yang.yang29@zte.com.cn>
Cc: Jiang Xuexin <jiang.xuexin@zte.com.cn>
Cc: wangyong <wang.yong12@zte.com.cn>
Cc: junhua huang <huang.junhua@zte.com.cn>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Commit 829c1651e9 ("sched/fair: sanitize vruntime of entity being placed")
fixes an overflowing bug, but ignore a case that se->exec_start is reset
after a migration.
For fixing this case, we delay the reset of se->exec_start after
placing the entity which se->exec_start to detect long sleeping task.
In order to take into account a possible divergence between the clock_task
of 2 rqs, we increase the threshold to around 104 days.
Fixes: 829c1651e9 ("sched/fair: sanitize vruntime of entity being placed")
Originally-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Qiao <zhangqiao22@huawei.com>
Link: https://lore.kernel.org/r/20230317160810.107988-1-vincent.guittot@linaro.org
The getaffinity() system call uses 'cpumask_size()' to decide how big
the CPU mask is - so far so good. It is indeed the allocation size of a
cpumask.
But the code also assumes that the whole allocation is initialized
without actually doing so itself. That's wrong, because we might have
fixed-size allocations (making copying and clearing more efficient), but
not all of it is then necessarily used if 'nr_cpu_ids' is smaller.
Having checked other users of 'cpumask_size()', they all seem to be ok,
either using it purely for the allocation size, or explicitly zeroing
the cpumask before using the size in bytes to copy it.
See for example the ublk_ctrl_get_queue_affinity() function that uses
the proper 'zalloc_cpumask_var()' to make sure that the whole mask is
cleared, whether the storage is on the stack or if it was an external
allocation.
Fix this by just zeroing the allocation before using it. Do the same
for the compat version of sched_getaffinity(), which had the same logic.
Also, for consistency, make sched_getaffinity() use 'cpumask_bits()' to
access the bits. For a cpumask_var_t, it ends up being a pointer to the
same data either way, but it's just a good idea to treat it like you
would a 'cpumask_t'. The compat case already did that.
Reported-by: Ryan Roberts <ryan.roberts@arm.com>
Link: https://lore.kernel.org/lkml/7d026744-6bd6-6827-0471-b5e8eae0be3f@arm.com/
Cc: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull RCU updates from Paul McKenney:
- Documentation updates
- Miscellaneous fixes, perhaps most notably:
- Throttling callback invocation based on the number of callbacks
that are now ready to invoke instead of on the total number of
callbacks
- Several patches that suppress false-positive boot-time
diagnostics, for example, due to lockdep not yet being
initialized
- Make expedited RCU CPU stall warnings dump stacks of any tasks
that are blocking the stalled grace period. (Normal RCU CPU
stall warnings have done this for many years)
- Lazy-callback fixes to avoid delays during boot, suspend, and
resume. (Note that lazy callbacks must be explicitly enabled, so
this should not (yet) affect production use cases)
- Make kfree_rcu() and friends take advantage of polled grace periods,
thus reducing memory footprint by almost two orders of magnitude,
admittedly on a microbenchmark
This also begins the transition from kfree_rcu(p) to
kfree_rcu_mightsleep(p). This transition was motivated by bugs where
kfree_rcu(p), which can block, was typed instead of the intended
kfree_rcu(p, rh)
- SRCU updates, perhaps most notably fixing a bug that causes SRCU to
fail when booted on a system with a non-zero boot CPU. This
surprising situation actually happens for kdump kernels on the
powerpc architecture
This also adds an srcu_down_read() and srcu_up_read(), which act like
srcu_read_lock() and srcu_read_unlock(), but allow an SRCU read-side
critical section to be handed off from one task to another
- Clean up the now-useless SRCU Kconfig option
There are a few more commits that are not yet acked or pulled into
maintainer trees, and these will be in a pull request for a later
merge window
- RCU-tasks updates, perhaps most notably these fixes:
- A strange interaction between PID-namespace unshare and the
RCU-tasks grace period that results in a low-probability but
very real hang
- A race between an RCU tasks rude grace period on a single-CPU
system and CPU-hotplug addition of the second CPU that can
result in a too-short grace period
- A race between shrinking RCU tasks down to a single callback
list and queuing a new callback to some other CPU, but where
that queuing is delayed for more than an RCU grace period. This
can result in that callback being stranded on the non-boot CPU
- Torture-test updates and fixes
- Torture-test scripting updates and fixes
- Provide additional RCU CPU stall-warning information in kernels built
with CONFIG_RCU_CPU_STALL_CPUTIME=y, and restore the full five-minute
timeout limit for expedited RCU CPU stall warnings
* tag 'rcu.2023.02.10a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (80 commits)
rcu/kvfree: Add kvfree_rcu_mightsleep() and kfree_rcu_mightsleep()
kernel/notifier: Remove CONFIG_SRCU
init: Remove "select SRCU"
fs/quota: Remove "select SRCU"
fs/notify: Remove "select SRCU"
fs/btrfs: Remove "select SRCU"
fs: Remove CONFIG_SRCU
drivers/pci/controller: Remove "select SRCU"
drivers/net: Remove "select SRCU"
drivers/md: Remove "select SRCU"
drivers/hwtracing/stm: Remove "select SRCU"
drivers/dax: Remove "select SRCU"
drivers/base: Remove CONFIG_SRCU
rcu: Disable laziness if lazy-tracking says so
rcu: Track laziness during boot and suspend
rcu: Remove redundant call to rcu_boost_kthread_setaffinity()
rcu: Allow up to five minutes expedited RCU CPU stall-warning timeouts
rcu: Align the output of RCU CPU stall warning messages
rcu: Add RCU stall diagnosis information
sched: Add helper nr_context_switches_cpu()
...
Pull scheduler updates from Ingo Molnar:
- Improve the scalability of the CFS bandwidth unthrottling logic with
large number of CPUs.
- Fix & rework various cpuidle routines, simplify interaction with the
generic scheduler code. Add __cpuidle methods as noinstr to objtool's
noinstr detection and fix boatloads of cpuidle bugs & quirks.
- Add new ABI: introduce MEMBARRIER_CMD_GET_REGISTRATIONS, to query
previously issued registrations.
- Limit scheduler slice duration to the sysctl_sched_latency period, to
improve scheduling granularity with a large number of SCHED_IDLE
tasks.
- Debuggability enhancement on sys_exit(): warn about disabled IRQs,
but also enable them to prevent a cascade of followup problems and
repeat warnings.
- Fix the rescheduling logic in prio_changed_dl().
- Micro-optimize cpufreq and sched-util methods.
- Micro-optimize ttwu_runnable()
- Micro-optimize the idle-scanning in update_numa_stats(),
select_idle_capacity() and steal_cookie_task().
- Update the RSEQ code & self-tests
- Constify various scheduler methods
- Remove unused methods
- Refine __init tags
- Documentation updates
- Misc other cleanups, fixes
* tag 'sched-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits)
sched/rt: pick_next_rt_entity(): check list_entry
sched/deadline: Add more reschedule cases to prio_changed_dl()
sched/fair: sanitize vruntime of entity being placed
sched/fair: Remove capacity inversion detection
sched/fair: unlink misfit task from cpu overutilized
objtool: mem*() are not uaccess safe
cpuidle: Fix poll_idle() noinstr annotation
sched/clock: Make local_clock() noinstr
sched/clock/x86: Mark sched_clock() noinstr
x86/pvclock: Improve atomic update of last_value in pvclock_clocksource_read()
x86/atomics: Always inline arch_atomic64*()
cpuidle: tracing, preempt: Squash _rcuidle tracing
cpuidle: tracing: Warn about !rcu_is_watching()
cpuidle: lib/bug: Disable rcu_is_watching() during WARN/BUG
cpuidle: drivers: firmware: psci: Dont instrument suspend code
KVM: selftests: Fix build of rseq test
exit: Detect and fix irq disabled state in oops
cpuidle, arm64: Fix the ARM64 cpuidle logic
cpuidle: mvebu: Fix duplicate flags assignment
sched/fair: Limit sched slice duration
...
Since commit 8f9ea86fdf ("sched: Always preserve the user requested
cpumask"), a successful call to sched_setaffinity() should always save
the user requested cpu affinity mask in a task's user_cpus_ptr. However,
when the given cpu mask is the same as the current one, user_cpus_ptr
is not updated. Fix this by saving the user mask in this case too.
Fixes: 8f9ea86fdf ("sched: Always preserve the user requested cpumask")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230203181849.221943-1-longman@redhat.com
The kernel commit 9a5418bc48 ("sched/core: Use kfree_rcu() in
do_set_cpus_allowed()") introduces a bug for kernels built with non-SMP
configs. Calling sched_setaffinity() on such a uniprocessor kernel will
cause cpumask_copy() to be called with a NULL pointer leading to general
protection fault. This is not really a problem in real use cases as
there aren't that many uniprocessor kernel configs in use and calling
sched_setaffinity() on such a uniprocessor system doesn't make sense.
Fix this problem by making sure cpumask_copy() will not be called in
such a case.
Fixes: 9a5418bc48 ("sched/core: Use kfree_rcu() in do_set_cpus_allowed()")
Reported-by: kernel test robot <yujie.liu@intel.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230115193122.563036-1-longman@redhat.com
Commit 851a723e45 ("sched: Always clear user_cpus_ptr in
do_set_cpus_allowed()") may call kfree() if user_cpus_ptr was previously
set. Unfortunately, some of the callers of do_set_cpus_allowed()
may have pi_lock held when calling it. So the following splats may be
printed especially when running with a PREEMPT_RT kernel:
WARNING: possible circular locking dependency detected
BUG: sleeping function called from invalid context
To avoid these problems, kfree_rcu() is used instead. An internal
cpumask_rcuhead union is created for the sole purpose of facilitating
the use of kfree_rcu() to free the cpumask.
Since user_cpus_ptr is not being used in non-SMP configs, the newly
introduced alloc_user_cpus_ptr() helper will return NULL in this case
and sched_setaffinity() is modified to handle this special case.
Fixes: 851a723e45 ("sched: Always clear user_cpus_ptr in do_set_cpus_allowed()")
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221231041120.440785-3-longman@redhat.com
Since commit 07ec77a1d4 ("sched: Allow task CPU affinity to be
restricted on asymmetric systems"), the setting and clearing of
user_cpus_ptr are done under pi_lock for arm64 architecture. However,
dup_user_cpus_ptr() accesses user_cpus_ptr without any lock
protection. Since sched_setaffinity() can be invoked from another
process, the process being modified may be undergoing fork() at
the same time. When racing with the clearing of user_cpus_ptr in
__set_cpus_allowed_ptr_locked(), it can lead to user-after-free and
possibly double-free in arm64 kernel.
Commit 8f9ea86fdf ("sched: Always preserve the user requested
cpumask") fixes this problem as user_cpus_ptr, once set, will never
be cleared in a task's lifetime. However, this bug was re-introduced
in commit 851a723e45 ("sched: Always clear user_cpus_ptr in
do_set_cpus_allowed()") which allows the clearing of user_cpus_ptr in
do_set_cpus_allowed(). This time, it will affect all arches.
Fix this bug by always clearing the user_cpus_ptr of the newly
cloned/forked task before the copying process starts and check the
user_cpus_ptr state of the source task under pi_lock.
Note to stable, this patch won't be applicable to stable releases.
Just copy the new dup_user_cpus_ptr() function over.
Fixes: 07ec77a1d4 ("sched: Allow task CPU affinity to be restricted on asymmetric systems")
Fixes: 851a723e45 ("sched: Always clear user_cpus_ptr in do_set_cpus_allowed()")
Reported-by: David Wang 王标 <wangbiao3@xiaomi.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20221231041120.440785-2-longman@redhat.com
In order for the scheduler to be frequency invariant we measure the
ratio between the maximum CPU frequency and the actual CPU frequency.
During long tickless periods of time the calculations that keep track
of that might overflow, in the function scale_freq_tick():
if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
goto error;
eventually forcing the kernel to disable the feature for all CPUs,
and show the warning message:
"Scheduler frequency invariance went wobbly, disabling!".
Let's avoid that by limiting the frequency invariant calculations
to CPUs with regular tick.
Fixes: e2b0d619b4 ("x86, sched: check for counters overflow in frequency invariant accounting")
Suggested-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: Yair Podemsky <ypodemsk@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Acked-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Link: https://lore.kernel.org/r/20221130125121.34407-1-ypodemsk@redhat.com
ttwu_do_activate() is used for a complete wakeup, in which we will
activate_task() and use ttwu_do_wakeup() to mark the task runnable
and perform wakeup-preemption, also call class->task_woken() callback
and update the rq->idle_stamp.
Since ttwu_runnable() is not a complete wakeup, don't need all those
done in ttwu_do_wakeup(), so we can move those to ttwu_do_activate()
to simplify ttwu_do_wakeup(), making it only mark the task runnable
to be reused in ttwu_runnable() and try_to_wake_up().
This patch should not have any functional changes.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20221223103257.4962-2-zhouchengming@bytedance.com
ttwu_runnable() is used as a fast wakeup path when the wakee task
is running on CPU or runnable on RQ, in both cases we can just
set its state to TASK_RUNNING to prevent a sleep.
If the wakee task is on_cpu running, we don't need to update_rq_clock()
or check_preempt_curr().
But if the wakee task is on_rq && !on_cpu (e.g. an IRQ hit before
the task got to schedule() and the task been preempted), we should
check_preempt_curr() to see if it can preempt the current running.
This also removes the class->task_woken() callback from ttwu_runnable(),
which wasn't required per the RT/DL implementations: any required push
operation would have been queued during class->set_next_task() when p
got preempted.
ttwu_runnable() also loses the update to rq->idle_stamp, as by definition
the rq cannot be idle in this scenario.
Suggested-by: Valentin Schneider <vschneid@redhat.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20221223103257.4962-1-zhouchengming@bytedance.com
When select_idle_capacity() starts scanning for an idle CPU, it starts
with target CPU that has already been checked in select_idle_sibling().
So we start checking from the next CPU and try the target CPU at the end.
Similarly for task_numa_assign(), we have just checked numa_migrate_on
of dst_cpu, so start from the next CPU. This also works for
steal_cookie_task(), the first scan must fail and start directly
from the next one.
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Link: https://lore.kernel.org/r/20221216062406.7812-3-jiahao.os@bytedance.com
With a modified container_of() that preserves constness, the compiler
finds some pointers which should have been marked as const. task_of()
also needs to become const-preserving for the !FAIR_GROUP_SCHED case so
that cfs_rq_of() can take a const argument. No change to generated code.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221212144946.2657785-1-willy@infradead.org
This feature allows the scheduler to expose a per-memory map concurrency
ID to user-space. This concurrency ID is within the possible cpus range,
and is temporarily (and uniquely) assigned while threads are actively
running within a memory map. If a memory map has fewer threads than
cores, or is limited to run on few cores concurrently through sched
affinity or cgroup cpusets, the concurrency IDs will be values close
to 0, thus allowing efficient use of user-space memory for per-cpu
data structures.
This feature is meant to be exposed by a new rseq thread area field.
The primary purpose of this feature is to do the heavy-lifting needed
by memory allocators to allow them to use per-cpu data structures
efficiently in the following situations:
- Single-threaded applications,
- Multi-threaded applications on large systems (many cores) with limited
cpu affinity mask,
- Multi-threaded applications on large systems (many cores) with
restricted cgroup cpuset per container.
One of the key concern from scheduler maintainers is the overhead
associated with additional spin locks or atomic operations in the
scheduler fast-path. This is why the following optimization is
implemented.
On context switch between threads belonging to the same memory map,
transfer the mm_cid from prev to next without any atomic ops. This
takes care of use-cases involving frequent context switch between
threads belonging to the same memory map.
Additional optimizations can be done if the spin locks added when
context switching between threads belonging to different memory maps end
up being a performance bottleneck. Those are left out of this patch
though. A performance impact would have to be clearly demonstrated to
justify the added complexity.
The credit goes to Paul Turner (Google) for the original virtual cpu id
idea. This feature is implemented based on the discussions with Paul
Turner and Peter Oskolkov (Google), but I took the liberty to implement
scheduler fast-path optimizations and my own NUMA-awareness scheme. The
rumor has it that Google have been running a rseq vcpu_id extension
internally in production for a year. The tcmalloc source code indeed has
comments hinting at a vcpu_id prototype extension to the rseq system
call [1].
The following benchmarks do not show any significant overhead added to
the scheduler context switch by this feature:
* perf bench sched messaging (process)
Baseline: 86.5±0.3 ms
With mm_cid: 86.7±2.6 ms
* perf bench sched messaging (threaded)
Baseline: 84.3±3.0 ms
With mm_cid: 84.7±2.6 ms
* hackbench (process)
Baseline: 82.9±2.7 ms
With mm_cid: 82.9±2.9 ms
* hackbench (threaded)
Baseline: 85.2±2.6 ms
With mm_cid: 84.4±2.9 ms
[1] https://github.com/google/tcmalloc/blob/master/tcmalloc/internal/linux_syscall_support.h#L26
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221122203932.231377-8-mathieu.desnoyers@efficios.com
Pull kernel hardening updates from Kees Cook:
- Convert flexible array members, fix -Wstringop-overflow warnings, and
fix KCFI function type mismatches that went ignored by maintainers
(Gustavo A. R. Silva, Nathan Chancellor, Kees Cook)
- Remove the remaining side-effect users of ksize() by converting
dma-buf, btrfs, and coredump to using kmalloc_size_roundup(), add
more __alloc_size attributes, and introduce full testing of all
allocator functions. Finally remove the ksize() side-effect so that
each allocation-aware checker can finally behave without exceptions
- Introduce oops_limit (default 10,000) and warn_limit (default off) to
provide greater granularity of control for panic_on_oops and
panic_on_warn (Jann Horn, Kees Cook)
- Introduce overflows_type() and castable_to_type() helpers for cleaner
overflow checking
- Improve code generation for strscpy() and update str*() kern-doc
- Convert strscpy and sigphash tests to KUnit, and expand memcpy tests
- Always use a non-NULL argument for prepare_kernel_cred()
- Disable structleak plugin in FORTIFY KUnit test (Anders Roxell)
- Adjust orphan linker section checking to respect CONFIG_WERROR (Xin
Li)
- Make sure siginfo is cleared for forced SIGKILL (haifeng.xu)
- Fix um vs FORTIFY warnings for always-NULL arguments
* tag 'hardening-v6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (31 commits)
ksmbd: replace one-element arrays with flexible-array members
hpet: Replace one-element array with flexible-array member
um: virt-pci: Avoid GCC non-NULL warning
signal: Initialize the info in ksignal
lib: fortify_kunit: build without structleak plugin
panic: Expose "warn_count" to sysfs
panic: Introduce warn_limit
panic: Consolidate open-coded panic_on_warn checks
exit: Allow oops_limit to be disabled
exit: Expose "oops_count" to sysfs
exit: Put an upper limit on how often we can oops
panic: Separate sysctl logic from CONFIG_SMP
mm/pgtable: Fix multiple -Wstringop-overflow warnings
mm: Make ksize() a reporting-only function
kunit/fortify: Validate __alloc_size attribute results
drm/sti: Fix return type of sti_{dvo,hda,hdmi}_connector_mode_valid()
drm/fsl-dcu: Fix return type of fsl_dcu_drm_connector_mode_valid()
driver core: Add __alloc_size hint to devm allocators
overflow: Introduce overflows_type() and castable_to_type()
coredump: Proactively round up to kmalloc bucket size
...
Pull sysctl updates from Luis Chamberlain:
"Only a small step forward on the sysctl cleanups for this cycle"
* tag 'sysctl-6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux:
sched: Move numa_balancing sysctls to its own file
Pull scheduler updates from Ingo Molnar:
- Implement persistent user-requested affinity: introduce
affinity_context::user_mask and unconditionally preserve the
user-requested CPU affinity masks, for long-lived tasks to better
interact with cpusets & CPU hotplug events over longer timespans,
without destroying the original affinity intent if the underlying
topology changes.
- Uclamp updates: fix relationship between uclamp and fits_capacity()
- PSI fixes
- Misc fixes & updates
* tag 'sched-core-2022-12-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Clear ttwu_pending after enqueue_task()
sched/psi: Use task->psi_flags to clear in CPU migration
sched/psi: Stop relying on timer_pending() for poll_work rescheduling
sched/psi: Fix avgs_work re-arm in psi_avgs_work()
sched/psi: Fix possible missing or delayed pending event
sched: Always clear user_cpus_ptr in do_set_cpus_allowed()
sched: Enforce user requested affinity
sched: Always preserve the user requested cpumask
sched: Introduce affinity_context
sched: Add __releases annotations to affine_move_task()
sched/fair: Check if prev_cpu has highest spare cap in feec()
sched/fair: Consider capacity inversion in util_fits_cpu()
sched/fair: Detect capacity inversion
sched/uclamp: Cater for uclamp in find_energy_efficient_cpu()'s early exit condition
sched/uclamp: Make cpu_overutilized() use util_fits_cpu()
sched/uclamp: Make asym_fits_capacity() use util_fits_cpu()
sched/uclamp: Make select_idle_capacity() use util_fits_cpu()
sched/uclamp: Fix fits_capacity() check in feec()
sched/uclamp: Make task_fits_capacity() use util_fits_cpu()
sched/uclamp: Fix relationship between uclamp and migration margin
The sysctl_numa_balancing_promote_rate_limit and sysctl_numa_balancing
are part of sched, move them to its own file.
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
We found a long tail latency in schbench whem m*t is close to nr_cpus.
(e.g., "schbench -m 2 -t 16" on a machine with 32 cpus.)
This is because when the wakee cpu is idle, rq->ttwu_pending is cleared
too early, and idle_cpu() will return true until the wakee task enqueued.
This will mislead the waker when selecting idle cpu, and wake multiple
worker threads on the same wakee cpu. This situation is enlarged by
commit f3dd3f6745 ("sched: Remove the limitation of WF_ON_CPU on
wakelist if wakee cpu is idle") because it tends to use wakelist.
Here is the result of "schbench -m 2 -t 16" on a VM with 32vcpu
(Intel(R) Xeon(R) Platinum 8369B).
Latency percentiles (usec):
base base+revert_f3dd3f674555 base+this_patch
50.0000th: 9 13 9
75.0000th: 12 19 12
90.0000th: 15 22 15
95.0000th: 18 24 17
*99.0000th: 27 31 24
99.5000th: 3364 33 27
99.9000th: 12560 36 30
We also tested on unixbench and hackbench, and saw no performance
change.
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20221104023601.12844-1-dtcccc@linux.alibaba.com
There is a very narrow race between schedule() and task_call_func().
CPU0 CPU1
__schedule()
rq_lock();
prev_state = READ_ONCE(prev->__state);
if (... && prev_state) {
deactivate_tasl(rq, prev, ...)
prev->on_rq = 0;
task_call_func()
raw_spin_lock_irqsave(p->pi_lock);
state = READ_ONCE(p->__state);
smp_rmb();
if (... || p->on_rq) // false!!!
rq = __task_rq_lock()
ret = func();
next = pick_next_task();
rq = context_switch(prev, next)
prepare_lock_switch()
spin_release(&__rq_lockp(rq)->dep_map...)
So while the task is on it's way out, it still holds rq->lock for a
little while, and right then task_call_func() comes in and figures it
doesn't need rq->lock anymore (because the task is already dequeued --
but still running there) and then the __set_task_frozen() thing observes
it's holding rq->lock and yells murder.
Avoid this by waiting for p->on_cpu to get cleared, which guarantees
the task is fully finished on the old CPU.
( While arguably the fixes tag is 'wrong' -- none of the previous
task_call_func() users appears to care for this case. )
Fixes: f5d39b0208 ("freezer,sched: Rewrite core freezer logic")
Reported-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://lkml.kernel.org/r/Y1kdRNNfUeAU+FNl@hirez.programming.kicks-ass.net
It was found that the user requested affinity via sched_setaffinity()
can be easily overwritten by other kernel subsystems without an easy way
to reset it back to what the user requested. For example, any change
to the current cpuset hierarchy may reset the cpumask of the tasks in
the affected cpusets to the default cpuset value even if those tasks
have pre-existing user requested affinity. That is especially easy to
trigger under a cgroup v2 environment where writing "+cpuset" to the
root cgroup's cgroup.subtree_control file will reset the cpus affinity
of all the processes in the system.
That is problematic in a nohz_full environment where the tasks running
in the nohz_full CPUs usually have their cpus affinity explicitly set
and will behave incorrectly if cpus affinity changes.
Fix this problem by looking at user_cpus_ptr in __set_cpus_allowed_ptr()
and use it to restrcit the given cpumask unless there is no overlap. In
that case, it will fallback to the given one. The SCA_USER flag is
reused to indicate intent to set user_cpus_ptr and so user_cpus_ptr
masking should be skipped. In addition, masking should also be skipped
if any of the SCA_MIGRATE_* flag is set.
All callers of set_cpus_allowed_ptr() will be affected by this change.
A scratch cpumask is added to percpu runqueues structure for doing
additional masking when user_cpus_ptr is set.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220922180041.1768141-4-longman@redhat.com
As reported by Yun Hsiang [1], if a task has its uclamp_min >= 0.8 * 1024,
it'll always pick the previous CPU because fits_capacity() will always
return false in this case.
The new util_fits_cpu() logic should handle this correctly for us beside
more corner cases where similar failures could occur, like when using
UCLAMP_MAX.
We open code uclamp_rq_util_with() except for the clamp() part,
util_fits_cpu() needs the 'raw' values to be passed to it.
Also introduce uclamp_rq_{set, get}() shorthand accessors to get uclamp
value for the rq. Makes the code more readable and ensures the right
rules (use READ_ONCE/WRITE_ONCE) are respected transparently.
[1] https://lists.linaro.org/pipermail/eas-dev/2020-July/001488.html
Fixes: 1d42509e47 ("sched/fair: Make EAS wakeup placement consider uclamp restrictions")
Reported-by: Yun Hsiang <hsiang023167@gmail.com>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-4-qais.yousef@arm.com
Introduce distinct struct balance_callback instead of performing function
pointer casting which will trip CFI. Avoids warnings as found by Clang's
future -Wcast-function-type-strict option:
In file included from kernel/sched/core.c:84:
kernel/sched/sched.h:1755:15: warning: cast from 'void (*)(struct rq *)' to 'void (*)(struct callback_head *)' converts to incompatible function type [-Wcast-function-type-strict]
head->func = (void (*)(struct callback_head *))func;
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
No binary differences result from this change.
This patch is a cleanup based on Brad Spengler/PaX Team's modifications
to sched code in their last public patch of grsecurity/PaX based on my
understanding of the code. Changes or omissions from the original code
are mine and don't reflect the original grsecurity/PaX code.
Reported-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Link: https://github.com/ClangBuiltLinux/linux/issues/1724
Link: https://lkml.kernel.org/r/20221008000758.2957718-1-keescook@chromium.org
Pull PSI updates from Ingo Molnar:
- Various performance optimizations, resulting in a 4%-9% speedup in
the mmtests/config-scheduler-perfpipe micro-benchmark.
- New interface to turn PSI on/off on a per cgroup level.
* tag 'sched-psi-2022-10-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/psi: Per-cgroup PSI accounting disable/re-enable interface
sched/psi: Cache parent psi_group to speed up group iteration
sched/psi: Consolidate cgroup_psi()
sched/psi: Add PSI_IRQ to track IRQ/SOFTIRQ pressure
sched/psi: Remove NR_ONCPU task accounting
sched/psi: Optimize task switch inside shared cgroups again
sched/psi: Move private helpers to sched/stats.h
sched/psi: Save percpu memory when !psi_cgroups_enabled
sched/psi: Don't create cgroup PSI files when psi_disabled
sched/psi: Fix periodic aggregation shut off
Pull MM updates from Andrew Morton:
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any
negative reports (or any positive ones, come to that).
- Also the Maple Tree from Liam Howlett. An overlapping range-based
tree for vmas. It it apparently slightly more efficient in its own
right, but is mainly targeted at enabling work to reduce mmap_lock
contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
at [1]. This has yet to be addressed due to Liam's unfortunately
timed vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down
to the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to
support file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and
memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging
activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1]
* tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits)
hugetlb: allocate vma lock for all sharable vmas
hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer
hugetlb: fix vma lock handling during split vma and range unmapping
mglru: mm/vmscan.c: fix imprecise comments
mm/mglru: don't sync disk for each aging cycle
mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol
mm: memcontrol: use do_memsw_account() in a few more places
mm: memcontrol: deprecate swapaccounting=0 mode
mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled
mm/secretmem: remove reduntant return value
mm/hugetlb: add available_huge_pages() func
mm: remove unused inline functions from include/linux/mm_inline.h
selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory
selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd
selftests/vm: add thp collapse shmem testing
selftests/vm: add thp collapse file and tmpfs testing
selftests/vm: modularize thp collapse memory operations
selftests/vm: dedup THP helpers
mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
mm/madvise: add file and shmem support to MADV_COLLAPSE
...
Pull bitmap updates from Yury Norov:
- Fix unsigned comparison to -1 in CPUMAP_FILE_MAX_BYTES (Phil Auld)
- cleanup nr_cpu_ids vs nr_cpumask_bits mess (me)
This series cleans that mess and adds new config FORCE_NR_CPUS that
allows to optimize cpumask subsystem if the number of CPUs is known
at compile-time.
- optimize find_bit() functions (me)
Reworks find_bit() functions based on new FIND_{FIRST,NEXT}_BIT()
macros.
- add find_nth_bit() (me)
Adds find_nth_bit(), which is ~70 times faster than bitcounting with
for_each() loop:
for_each_set_bit(bit, mask, size)
if (n-- == 0)
return bit;
Also adds bitmap_weight_and() to let people replace this pattern:
tmp = bitmap_alloc(nbits);
bitmap_and(tmp, map1, map2, nbits);
weight = bitmap_weight(tmp, nbits);
bitmap_free(tmp);
with a single bitmap_weight_and() call.
- repair cpumask_check() (me)
After switching cpumask to use nr_cpu_ids, cpumask_check() started
generating many false-positive warnings. This series fixes it.
- Add for_each_cpu_andnot() and for_each_cpu_andnot() (Valentin
Schneider)
Extends the API with one more function and applies it in sched/core.
* tag 'bitmap-6.1-rc1' of https://github.com/norov/linux: (28 commits)
sched/core: Merge cpumask_andnot()+for_each_cpu() into for_each_cpu_andnot()
lib/test_cpumask: Add for_each_cpu_and(not) tests
cpumask: Introduce for_each_cpu_andnot()
lib/find_bit: Introduce find_next_andnot_bit()
cpumask: fix checking valid cpu range
lib/bitmap: add tests for for_each() loops
lib/find: optimize for_each() macros
lib/bitmap: introduce for_each_set_bit_wrap() macro
lib/find_bit: add find_next{,_and}_bit_wrap
cpumask: switch for_each_cpu{,_not} to use for_each_bit()
net: fix cpu_max_bits_warn() usage in netif_attrmask_next{,_and}
cpumask: add cpumask_nth_{,and,andnot}
lib/bitmap: remove bitmap_ord_to_pos
lib/bitmap: add tests for find_nth_bit()
lib: add find_nth{,_and,_andnot}_bit()
lib/bitmap: add bitmap_weight_and()
lib/bitmap: don't call __bitmap_weight() in kernel code
tools: sync find_bit() implementation
lib/find_bit: optimize find_next_bit() functions
lib/find_bit: create find_first_zero_bit_le()
...
Pull scheduler updates from Ingo Molnar:
"Debuggability:
- Change most occurances of BUG_ON() to WARN_ON_ONCE()
- Reorganize & fix TASK_ state comparisons, turn it into a bitmap
- Update/fix misc scheduler debugging facilities
Load-balancing & regular scheduling:
- Improve the behavior of the scheduler in presence of lot of
SCHED_IDLE tasks - in particular they should not impact other
scheduling classes.
- Optimize task load tracking, cleanups & fixes
- Clean up & simplify misc load-balancing code
Freezer:
- Rewrite the core freezer to behave better wrt thawing and be
simpler in general, by replacing PF_FROZEN with TASK_FROZEN &
fixing/adjusting all the fallout.
Deadline scheduler:
- Fix the DL capacity-aware code
- Factor out dl_task_is_earliest_deadline() &
replenish_dl_new_period()
- Relax/optimize locking in task_non_contending()
Cleanups:
- Factor out the update_current_exec_runtime() helper
- Various cleanups, simplifications"
* tag 'sched-core-2022-10-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
sched: Fix more TASK_state comparisons
sched: Fix TASK_state comparisons
sched/fair: Move call to list_last_entry() in detach_tasks
sched/fair: Cleanup loop_max and loop_break
sched/fair: Make sure to try to detach at least one movable task
sched: Show PF_flag holes
freezer,sched: Rewrite core freezer logic
sched: Widen TAKS_state literals
sched/wait: Add wait_event_state()
sched/completion: Add wait_for_completion_state()
sched: Add TASK_ANY for wait_task_inactive()
sched: Change wait_task_inactive()s match_state
freezer,umh: Clean up freezer/initrd interaction
freezer: Have {,un}lock_system_sleep() save/restore flags
sched: Rename task_running() to task_on_cpu()
sched/fair: Cleanup for SIS_PROP
sched/fair: Default to false in test_idle_cores()
sched/fair: Remove useless check in select_idle_core()
sched/fair: Avoid double search on same cpu
sched/fair: Remove redundant check in select_idle_smt()
...
This removes the second use of the sched_core_mask temporary mask.
Suggested-by: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Task state is fundamentally a bitmask; direct comparisons are probably
not working as intended. Specifically the normal wait-state have
a number of possible modifiers:
TASK_UNINTERRUPTIBLE: TASK_WAKEKILL, TASK_NOLOAD, TASK_FREEZABLE
TASK_INTERRUPTIBLE: TASK_FREEZABLE
Specifically, the addition of TASK_FREEZABLE wrecked
__wait_is_interruptible(). This however led to an audit of direct
comparisons yielding the rest of the changes.
Fixes: f5d39b0208 ("freezer,sched: Rewrite core freezer logic")
Reported-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Debugged-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Christian Borntraeger <borntraeger@linux.ibm.com>
To further exploit spatial locality, the aging prefers to walk page tables
to search for young PTEs and promote hot pages. A kill switch will be
added in the next patch to disable this behavior. When disabled, the
aging relies on the rmap only.
NB: this behavior has nothing similar with the page table scanning in the
2.4 kernel [1], which searches page tables for old PTEs, adds cold pages
to swapcache and unmaps them.
To avoid confusion, the term "iteration" specifically means the traversal
of an entire mm_struct list; the term "walk" will be applied to page
tables and the rmap, as usual.
An mm_struct list is maintained for each memcg, and an mm_struct follows
its owner task to the new memcg when this task is migrated. Given an
lruvec, the aging iterates lruvec_memcg()->mm_list and calls
walk_page_range() with each mm_struct on this list to promote hot pages
before it increments max_seq.
When multiple page table walkers iterate the same list, each of them gets
a unique mm_struct; therefore they can run concurrently. Page table
walkers ignore any misplaced pages, e.g., if an mm_struct was migrated,
pages it left in the previous memcg will not be promoted when its current
memcg is under reclaim. Similarly, page table walkers will not promote
pages from nodes other than the one under reclaim.
This patch uses the following optimizations when walking page tables:
1. It tracks the usage of mm_struct's between context switches so that
page table walkers can skip processes that have been sleeping since
the last iteration.
2. It uses generational Bloom filters to record populated branches so
that page table walkers can reduce their search space based on the
query results, e.g., to skip page tables containing mostly holes or
misplaced pages.
3. It takes advantage of the accessed bit in non-leaf PMD entries when
CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG=y.
4. It does not zigzag between a PGD table and the same PMD table
spanning multiple VMAs. IOW, it finishes all the VMAs within the
range of the same PMD table before it returns to a PGD table. This
improves the cache performance for workloads that have large
numbers of tiny VMAs [2], especially when CONFIG_PGTABLE_LEVELS=5.
Server benchmark results:
Single workload:
fio (buffered I/O): no change
Single workload:
memcached (anon): +[8, 10]%
Ops/sec KB/sec
patch1-7: 1147696.57 44640.29
patch1-8: 1245274.91 48435.66
Configurations:
no change
Client benchmark results:
kswapd profiles:
patch1-7
48.16% lzo1x_1_do_compress (real work)
8.20% page_vma_mapped_walk (overhead)
7.06% _raw_spin_unlock_irq
2.92% ptep_clear_flush
2.53% __zram_bvec_write
2.11% do_raw_spin_lock
2.02% memmove
1.93% lru_gen_look_around
1.56% free_unref_page_list
1.40% memset
patch1-8
49.44% lzo1x_1_do_compress (real work)
6.19% page_vma_mapped_walk (overhead)
5.97% _raw_spin_unlock_irq
3.13% get_pfn_folio
2.85% ptep_clear_flush
2.42% __zram_bvec_write
2.08% do_raw_spin_lock
1.92% memmove
1.44% alloc_zspage
1.36% memset
Configurations:
no change
Thanks to the following developers for their efforts [3].
kernel test robot <lkp@intel.com>
[1] https://lwn.net/Articles/23732/
[2] https://llvm.org/docs/ScudoHardenedAllocator.html
[3] https://lore.kernel.org/r/202204160827.ekEARWQo-lkp@intel.com/
Link: https://lkml.kernel.org/r/20220918080010.2920238-9-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Brian Geffon <bgeffon@google.com>
Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Acked-by: Steven Barrett <steven@liquorix.net>
Acked-by: Suleiman Souhlal <suleiman@google.com>
Tested-by: Daniel Byrne <djbyrne@mtu.edu>
Tested-by: Donald Carr <d@chaos-reins.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru>
Tested-by: Shuang Zhai <szhai2@cs.rochester.edu>
Tested-by: Sofia Trinh <sofia.trinh@edi.works>
Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
sched_nr_migrate_break is set to a fix value and never changes so we can
replace it by a define SCHED_NR_MIGRATE_BREAK.
Also, we adjust SCHED_NR_MIGRATE_BREAK to be aligned with the init value
of sysctl_sched_nr_migrate which can be init to different values.
Then, use SCHED_NR_MIGRATE_BREAK to init sysctl_sched_nr_migrate.
The behavior stays unchanged unless you modify sysctl_sched_nr_migrate
trough debugfs.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220825122726.20819-3-vincent.guittot@linaro.org
The promotion hot threshold is workload and system configuration
dependent. So in this patch, a method to adjust the hot threshold
automatically is implemented. The basic idea is to control the number of
the candidate promotion pages to match the promotion rate limit. If the
hint page fault latency of a page is less than the hot threshold, we will
try to promote the page, and the page is called the candidate promotion
page.
If the number of the candidate promotion pages in the statistics interval
is much more than the promotion rate limit, the hot threshold will be
decreased to reduce the number of the candidate promotion pages.
Otherwise, the hot threshold will be increased to increase the number of
the candidate promotion pages.
To make the above method works, in each statistics interval, the total
number of the pages to check (on which the hint page faults occur) and the
hot/cold distribution need to be stable. Because the page tables are
scanned linearly in NUMA balancing, but the hot/cold distribution isn't
uniform along the address usually, the statistics interval should be
larger than the NUMA balancing scan period. So in the patch, the max scan
period is used as statistics interval and it works well in our tests.
Link: https://lkml.kernel.org/r/20220713083954.34196-4-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: osalvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zhong Jiang <zhongjiang-ali@linux.alibaba.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Now PSI already tracked workload pressure stall information for
CPU, memory and IO. Apart from these, IRQ/SOFTIRQ could have
obvious impact on some workload productivity, such as web service
workload.
When CONFIG_IRQ_TIME_ACCOUNTING, we can get IRQ/SOFTIRQ delta time
from update_rq_clock_task(), in which we can record that delta
to CPU curr task's cgroups as PSI_IRQ_FULL status.
Note we don't use PSI_IRQ_SOME since IRQ/SOFTIRQ always happen in
the current task on the CPU, make nothing productive could run
even if it were runnable, so we only use PSI_IRQ_FULL.
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/r/20220825164111.29534-8-zhouchengming@bytedance.com
Rewrite the core freezer to behave better wrt thawing and be simpler
in general.
By replacing PF_FROZEN with TASK_FROZEN, a special block state, it is
ensured frozen tasks stay frozen until thawed and don't randomly wake
up early, as is currently possible.
As such, it does away with PF_FROZEN and PF_FREEZER_SKIP, freeing up
two PF_flags (yay!).
Specifically; the current scheme works a little like:
freezer_do_not_count();
schedule();
freezer_count();
And either the task is blocked, or it lands in try_to_freezer()
through freezer_count(). Now, when it is blocked, the freezer
considers it frozen and continues.
However, on thawing, once pm_freezing is cleared, freezer_count()
stops working, and any random/spurious wakeup will let a task run
before its time.
That is, thawing tries to thaw things in explicit order; kernel
threads and workqueues before doing bringing SMP back before userspace
etc.. However due to the above mentioned races it is entirely possible
for userspace tasks to thaw (by accident) before SMP is back.
This can be a fatal problem in asymmetric ISA architectures (eg ARMv9)
where the userspace task requires a special CPU to run.
As said; replace this with a special task state TASK_FROZEN and add
the following state transitions:
TASK_FREEZABLE -> TASK_FROZEN
__TASK_STOPPED -> TASK_FROZEN
__TASK_TRACED -> TASK_FROZEN
The new TASK_FREEZABLE can be set on any state part of TASK_NORMAL
(IOW. TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE) -- any such state
is already required to deal with spurious wakeups and the freezer
causes one such when thawing the task (since the original state is
lost).
The special __TASK_{STOPPED,TRACED} states *can* be restored since
their canonical state is in ->jobctl.
With this, frozen tasks need an explicit TASK_FROZEN wakeup and are
free of undue (early / spurious) wakeups.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lore.kernel.org/r/20220822114649.055452969@infradead.org
Make wait_task_inactive()'s @match_state work like ttwu()'s @state.
That is, instead of an equal comparison, use it as a mask. This allows
matching multiple block conditions.
(removes the unlikely; it doesn't make sense how it's only part of the
condition)
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220822114648.856734578@infradead.org
The dump_cpu_task() function does not print registers on architectures
that do not support NMIs. However, registers can be useful for
debugging. Fortunately, in the case where dump_cpu_task() is invoked
from an interrupt handler and is dumping the current CPU's stack, the
get_irq_regs() function can be used to get the registers.
Therefore, this commit makes dump_cpu_task() check to see if it is being
asked to dump the current CPU's stack from within an interrupt handler,
and, if so, it uses the get_irq_regs() function to obtain the registers.
On systems that do support NMIs, this commit has the further advantage
of avoiding a self-NMI in this case.
This is an example of rcu self-detected stall on arm64, which does not
support NMIs:
[ 27.501721] rcu: INFO: rcu_preempt self-detected stall on CPU
[ 27.502238] rcu: 0-....: (1250 ticks this GP) idle=4f7/1/0x4000000000000000 softirq=2594/2594 fqs=619
[ 27.502632] (t=1251 jiffies g=2989 q=29 ncpus=4)
[ 27.503845] CPU: 0 PID: 306 Comm: test0 Not tainted 5.19.0-rc7-00009-g1c1a6c29ff99-dirty #46
[ 27.504732] Hardware name: linux,dummy-virt (DT)
[ 27.504947] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 27.504998] pc : arch_counter_read+0x18/0x24
[ 27.505301] lr : arch_counter_read+0x18/0x24
[ 27.505328] sp : ffff80000b29bdf0
[ 27.505345] x29: ffff80000b29bdf0 x28: 0000000000000000 x27: 0000000000000000
[ 27.505475] x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
[ 27.505553] x23: 0000000000001f40 x22: ffff800009849c48 x21: 000000065f871ae0
[ 27.505627] x20: 00000000000025ec x19: ffff80000a6eb300 x18: ffffffffffffffff
[ 27.505654] x17: 0000000000000001 x16: 0000000000000000 x15: ffff80000a6d0296
[ 27.505681] x14: ffffffffffffffff x13: ffff80000a29bc18 x12: 0000000000000426
[ 27.505709] x11: 0000000000000162 x10: ffff80000a2f3c18 x9 : ffff80000a29bc18
[ 27.505736] x8 : 00000000ffffefff x7 : ffff80000a2f3c18 x6 : 00000000759bd013
[ 27.505761] x5 : 01ffffffffffffff x4 : 0002dc6c00000000 x3 : 0000000000000017
[ 27.505787] x2 : 00000000000025ec x1 : ffff80000b29bdf0 x0 : 0000000075a30653
[ 27.505937] Call trace:
[ 27.506002] arch_counter_read+0x18/0x24
[ 27.506171] ktime_get+0x48/0xa0
[ 27.506207] test_task+0x70/0xf0
[ 27.506227] kthread+0x10c/0x110
[ 27.506243] ret_from_fork+0x10/0x20
This is a marked improvement over the old output:
[ 27.944550] rcu: INFO: rcu_preempt self-detected stall on CPU
[ 27.944980] rcu: 0-....: (1249 ticks this GP) idle=cbb/1/0x4000000000000000 softirq=2610/2610 fqs=614
[ 27.945407] (t=1251 jiffies g=2681 q=28 ncpus=4)
[ 27.945731] Task dump for CPU 0:
[ 27.945844] task:test0 state:R running task stack: 0 pid: 306 ppid: 2 flags:0x0000000a
[ 27.946073] Call trace:
[ 27.946151] dump_backtrace.part.0+0xc8/0xd4
[ 27.946378] show_stack+0x18/0x70
[ 27.946405] sched_show_task+0x150/0x180
[ 27.946427] dump_cpu_task+0x44/0x54
[ 27.947193] rcu_dump_cpu_stacks+0xec/0x130
[ 27.947212] rcu_sched_clock_irq+0xb18/0xef0
[ 27.947231] update_process_times+0x68/0xac
[ 27.947248] tick_sched_handle+0x34/0x60
[ 27.947266] tick_sched_timer+0x4c/0xa4
[ 27.947281] __hrtimer_run_queues+0x178/0x360
[ 27.947295] hrtimer_interrupt+0xe8/0x244
[ 27.947309] arch_timer_handler_virt+0x38/0x4c
[ 27.947326] handle_percpu_devid_irq+0x88/0x230
[ 27.947342] generic_handle_domain_irq+0x2c/0x44
[ 27.947357] gic_handle_irq+0x44/0xc4
[ 27.947376] call_on_irq_stack+0x2c/0x54
[ 27.947415] do_interrupt_handler+0x80/0x94
[ 27.947431] el1_interrupt+0x34/0x70
[ 27.947447] el1h_64_irq_handler+0x18/0x24
[ 27.947462] el1h_64_irq+0x64/0x68 <--- the above backtrace is worthless
[ 27.947474] arch_counter_read+0x18/0x24
[ 27.947487] ktime_get+0x48/0xa0
[ 27.947501] test_task+0x70/0xf0
[ 27.947520] kthread+0x10c/0x110
[ 27.947538] ret_from_fork+0x10/0x20
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Valentin Schneider <vschneid@redhat.com>
The trigger_all_cpu_backtrace() function attempts to send an NMI to the
target CPU, which usually provides much better stack traces than the
dump_cpu_task() function's approach of dumping that stack from some other
CPU. So much so that most calls to dump_cpu_task() only happen after
a call to trigger_all_cpu_backtrace() has failed. And the exception to
this rule really should attempt to use trigger_all_cpu_backtrace() first.
Therefore, move the trigger_all_cpu_backtrace() invocation into
dump_cpu_task().
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Valentin Schneider <vschneid@redhat.com>