Merge misc fixes from Andrew Morton:
"28 patches.
Subsystems affected by this series: mm (memblock, pagealloc, hugetlb,
highmem, kfence, oom-kill, madvise, kasan, userfaultfd, memcg, and
zram), core-kernel, kconfig, fork, binfmt, MAINTAINERS, kbuild, and
ia64"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (28 commits)
zram: fix broken page writeback
zram: fix return value on writeback_store
mm/memcg: set memcg when splitting page
mm/memcg: rename mem_cgroup_split_huge_fixup to split_page_memcg and add nr_pages argument
ia64: fix ptrace(PTRACE_SYSCALL_INFO_EXIT) sign
ia64: fix ia64_syscall_get_set_arguments() for break-based syscalls
mm/userfaultfd: fix memory corruption due to writeprotect
kasan: fix KASAN_STACK dependency for HW_TAGS
kasan, mm: fix crash with HW_TAGS and DEBUG_PAGEALLOC
mm/madvise: replace ptrace attach requirement for process_madvise
include/linux/sched/mm.h: use rcu_dereference in in_vfork()
kfence: fix reports if constant function prefixes exist
kfence, slab: fix cache_alloc_debugcheck_after() for bulk allocations
kfence: fix printk format for ptrdiff_t
linux/compiler-clang.h: define HAVE_BUILTIN_BSWAP*
MAINTAINERS: exclude uapi directories in API/ABI section
binfmt_misc: fix possible deadlock in bm_register_write
mm/highmem.c: fix zero_user_segments() with start > end
hugetlb: do early cow when page pinned on src mm
mm: use is_cow_mapping() across tree where proper
...
Userfaultfd self-test fails occasionally, indicating a memory corruption.
Analyzing this problem indicates that there is a real bug since mmap_lock
is only taken for read in mwriteprotect_range() and defers flushes, and
since there is insufficient consideration of concurrent deferred TLB
flushes in wp_page_copy(). Although the PTE is flushed from the TLBs in
wp_page_copy(), this flush takes place after the copy has already been
performed, and therefore changes of the page are possible between the time
of the copy and the time in which the PTE is flushed.
To make matters worse, memory-unprotection using userfaultfd also poses a
problem. Although memory unprotection is logically a promotion of PTE
permissions, and therefore should not require a TLB flush, the current
userrfaultfd code might actually cause a demotion of the architectural PTE
permission: when userfaultfd_writeprotect() unprotects memory region, it
unintentionally *clears* the RW-bit if it was already set. Note that this
unprotecting a PTE that is not write-protected is a valid use-case: the
userfaultfd monitor might ask to unprotect a region that holds both
write-protected and write-unprotected PTEs.
The scenario that happens in selftests/vm/userfaultfd is as follows:
cpu0 cpu1 cpu2
---- ---- ----
[ Writable PTE
cached in TLB ]
userfaultfd_writeprotect()
[ write-*unprotect* ]
mwriteprotect_range()
mmap_read_lock()
change_protection()
change_protection_range()
...
change_pte_range()
[ *clear* “write”-bit ]
[ defer TLB flushes ]
[ page-fault ]
...
wp_page_copy()
cow_user_page()
[ copy page ]
[ write to old
page ]
...
set_pte_at_notify()
A similar scenario can happen:
cpu0 cpu1 cpu2 cpu3
---- ---- ---- ----
[ Writable PTE
cached in TLB ]
userfaultfd_writeprotect()
[ write-protect ]
[ deferred TLB flush ]
userfaultfd_writeprotect()
[ write-unprotect ]
[ deferred TLB flush]
[ page-fault ]
wp_page_copy()
cow_user_page()
[ copy page ]
... [ write to page ]
set_pte_at_notify()
This race exists since commit 292924b260 ("userfaultfd: wp: apply
_PAGE_UFFD_WP bit"). Yet, as Yu Zhao pointed, these races became apparent
since commit 09854ba94c ("mm: do_wp_page() simplification") which made
wp_page_copy() more likely to take place, specifically if page_count(page)
> 1.
To resolve the aforementioned races, check whether there are pending
flushes on uffd-write-protected VMAs, and if there are, perform a flush
before doing the COW.
Further optimizations will follow to avoid during uffd-write-unprotect
unnecassary PTE write-protection and TLB flushes.
Link: https://lkml.kernel.org/r/20210304095423.3825684-1-namit@vmware.com
Fixes: 09854ba94c ("mm: do_wp_page() simplification")
Signed-off-by: Nadav Amit <namit@vmware.com>
Suggested-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Tested-by: Peter Xu <peterx@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org> [5.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
process_madvise currently requires ptrace attach capability.
PTRACE_MODE_ATTACH gives one process complete control over another
process. It effectively removes the security boundary between the two
processes (in one direction). Granting ptrace attach capability even to a
system process is considered dangerous since it creates an attack surface.
This severely limits the usage of this API.
The operations process_madvise can perform do not affect the correctness
of the operation of the target process; they only affect where the data is
physically located (and therefore, how fast it can be accessed). What we
want is the ability for one process to influence another process in order
to optimize performance across the entire system while leaving the
security boundary intact.
Replace PTRACE_MODE_ATTACH with a combination of PTRACE_MODE_READ and
CAP_SYS_NICE. PTRACE_MODE_READ to prevent leaking ASLR metadata and
CAP_SYS_NICE for influencing process performance.
Link: https://lkml.kernel.org/r/20210303185807.2160264-1-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jeff Vander Stoep <jeffv@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tim Murray <timmurray@google.com>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: <stable@vger.kernel.org> [5.10+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
zero_user_segments() is used from __block_write_begin_int(), for example
like the following
zero_user_segments(page, 4096, 1024, 512, 918)
But new the zero_user_segments() implementation for for HIGHMEM +
TRANSPARENT_HUGEPAGE doesn't handle "start > end" case correctly, and hits
BUG_ON(). (we can fix __block_write_begin_int() instead though, it is the
old and multiple usage)
Also it calls kmap_atomic() unnecessarily while start == end == 0.
Link: https://lkml.kernel.org/r/87v9ab60r4.fsf@mail.parknet.co.jp
Fixes: 0060ef3b4e ("mm: support THPs in zero_user_segments")
Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There could be struct pages that are not backed by actual physical memory.
This can happen when the actual memory bank is not a multiple of
SECTION_SIZE or when an architecture does not register memory holes
reserved by the firmware as memblock.memory.
Such pages are currently initialized using init_unavailable_mem() function
that iterates through PFNs in holes in memblock.memory and if there is a
struct page corresponding to a PFN, the fields of this page are set to
default values and it is marked as Reserved.
init_unavailable_mem() does not take into account zone and node the page
belongs to and sets both zone and node links in struct page to zero.
Before commit 73a6e474cb ("mm: memmap_init: iterate over memblock
regions rather that check each PFN") the holes inside a zone were
re-initialized during memmap_init() and got their zone/node links right.
However, after that commit nothing updates the struct pages representing
such holes.
On a system that has firmware reserved holes in a zone above ZONE_DMA, for
instance in a configuration below:
# grep -A1 E820 /proc/iomem
7a17b000-7a216fff : Unknown E820 type
7a217000-7bffffff : System RAM
unset zone link in struct page will trigger
VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
in set_pfnblock_flags_mask() when called with a struct page from a range
other than E820_TYPE_RAM because there are pages in the range of
ZONE_DMA32 but the unset zone link in struct page makes them appear as a
part of ZONE_DMA.
Interleave initialization of the unavailable pages with the normal
initialization of memory map, so that zone and node information will be
properly set on struct pages that are not backed by the actual memory.
With this change the pages for holes inside a zone will get proper
zone/node links and the pages that are not spanned by any node will get
links to the adjacent zone/node. The holes between nodes will be
prepended to the zone/node above the hole and the trailing pages in the
last section that will be appended to the zone/node below.
[akpm@linux-foundation.org: don't initialize static to zero, use %llu for u64]
Link: https://lkml.kernel.org/r/20210225224351.7356-2-rppt@kernel.org
Fixes: 73a6e474cb ("mm: memmap_init: iterate over memblock regions rather that check each PFN")
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reported-by: Qian Cai <cai@lca.pw>
Reported-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Łukasz Majczak <lma@semihalf.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Sarvela, Tomi P" <tomi.p.sarvela@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull arm64 fixes from Will Deacon:
"We've got a smattering of changes all over the place which we've
acrued since -rc1. To my knowledge, there aren't any pending issues at
the moment, but there's still plenty of time for something else to
crop up...
Summary:
- Fix booting a 52-bit-VA-aware kernel on Qualcomm Amberwing
- Fix pfn_valid() not to reject all ZONE_DEVICE memory
- Fix memory tagging setup for hotplugged memory regions
- Fix KASAN tagging in page_alloc() when DEBUG_VIRTUAL is enabled
- Fix accidental truncation of CPU PMU event counters
- Fix error code initialisation when failing probe of DMC620 PMU
- Fix return value initialisation for sve-ptrace selftest
- Drop broken support for CMDLINE_EXTEND"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
perf/arm_dmc620_pmu: Fix error return code in dmc620_pmu_device_probe()
arm64: mm: remove unused __cpu_uses_extended_idmap[_level()]
arm64: mm: use a 48-bit ID map when possible on 52-bit VA builds
arm64: perf: Fix 64-bit event counter read truncation
arm64/mm: Fix __enable_mmu() for new TGRAN range values
kselftest: arm64: Fix exit code of sve-ptrace
arm64: mte: Map hotplugged memory as Normal Tagged
arm64: kasan: fix page_alloc tagging with DEBUG_VIRTUAL
arm64/mm: Reorganize pfn_valid()
arm64/mm: Fix pfn_valid() for ZONE_DEVICE based memory
arm64/mm: Drop THP conditionality from FORCE_MAX_ZONEORDER
arm64/mm: Drop redundant ARCH_WANT_HUGE_PMD_SHARE
arm64: Drop support for CMDLINE_EXTEND
arm64: cpufeatures: Fix handling of CONFIG_CMDLINE for idreg overrides
This reverts commit 8ff60eb052.
The kernel test robot reports a huge performance regression due to the
commit, and the reason seems fairly straightforward: when there is
contention on the page list (which is what causes acquire_slab() to
fail), we do _not_ want to just loop and try again, because that will
transfer the contention to the 'n->list_lock' spinlock we hold, and
just make things even worse.
This is admittedly likely a problem only on big machines - the kernel
test robot report comes from a 96-thread dual socket Intel Xeon Gold
6252 setup, but the regression there really is quite noticeable:
-47.9% regression of stress-ng.rawpkt.ops_per_sec
and the commit that was marked as being fixed (7ced371971: "slub:
Acquire_slab() avoid loop") actually did the loop exit early very
intentionally (the hint being that "avoid loop" part of that commit
message), exactly to avoid this issue.
The correct thing to do may be to pick some kind of reasonable middle
ground: instead of breaking out of the loop on the very first sign of
contention, or trying over and over and over again, the right thing may
be to re-try _once_, and then give up on the second failure (or pick
your favorite value for "once"..).
Reported-by: kernel test robot <oliver.sang@intel.com>
Link: https://lore.kernel.org/lkml/20210301080404.GF12822@xsang-OptiPlex-9020/
Cc: Jann Horn <jannh@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We're not factoring in the start of the file for where to write and
read the swapfile, which leads to very unfortunate side effects of
writing where we should not be...
Fixes: 48d15436fd ("mm: remove get_swap_bio")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
For allocations from kmalloc caches, kasan_kmalloc() always follows
kasan_slab_alloc(). Currenly, both of them unpoison the whole object,
which is unnecessary.
This patch provides separate implementations for both annotations:
kasan_slab_alloc() unpoisons the whole object, and kasan_kmalloc() only
poisons the redzone.
For generic KASAN, the redzone start might not be aligned to
KASAN_GRANULE_SIZE. Therefore, the poisoning is split in two parts:
kasan_poison_last_granule() poisons the unaligned part, and then
kasan_poison() poisons the rest.
This patch also clarifies alignment guarantees of each of the poisoning
functions and drops the unnecessary round_up() call for redzone_end.
With this change, the early SLUB cache annotation needs to be changed to
kasan_slab_alloc(), as kasan_kmalloc() doesn't unpoison objects now. The
number of poisoned bytes for objects in this cache stays the same, as
kmem_cache_node->object_size is equal to sizeof(struct kmem_cache_node).
Link: https://lkml.kernel.org/r/7e3961cb52be380bc412860332063f5f7ce10d13.1612546384.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "kasan: optimizations and fixes for HW_TAGS", v4.
This patchset makes the HW_TAGS mode more efficient, mostly by reworking
poisoning approaches and simplifying/inlining some internal helpers.
With this change, the overhead of HW_TAGS annotations excluding setting
and checking memory tags is ~3%. The performance impact caused by tags
will be unknown until we have hardware that supports MTE.
As a side-effect, this patchset speeds up generic KASAN by ~15%.
This patch (of 13):
Currently KASAN saves allocation stacks in both kasan_slab_alloc() and
kasan_kmalloc() annotations. This patch changes KASAN to save allocation
stacks for slab objects from kmalloc caches in kasan_kmalloc() only, and
stacks for other slab objects in kasan_slab_alloc() only.
This change requires ____kasan_kmalloc() knowing whether the object
belongs to a kmalloc cache. This is implemented by adding a flag field to
the kasan_info structure. That flag is only set for kmalloc caches via a
new kasan_cache_create_kmalloc() annotation.
Link: https://lkml.kernel.org/r/cover.1612546384.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/7c673ebca8d00f40a7ad6f04ab9a2bddeeae2097.1612546384.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "KFENCE: A low-overhead sampling-based memory safety error detector", v7.
This adds the Kernel Electric-Fence (KFENCE) infrastructure. KFENCE is a
low-overhead sampling-based memory safety error detector of heap
use-after-free, invalid-free, and out-of-bounds access errors. This
series enables KFENCE for the x86 and arm64 architectures, and adds
KFENCE hooks to the SLAB and SLUB allocators.
KFENCE is designed to be enabled in production kernels, and has near
zero performance overhead. Compared to KASAN, KFENCE trades performance
for precision. The main motivation behind KFENCE's design, is that with
enough total uptime KFENCE will detect bugs in code paths not typically
exercised by non-production test workloads. One way to quickly achieve a
large enough total uptime is when the tool is deployed across a large
fleet of machines.
KFENCE objects each reside on a dedicated page, at either the left or
right page boundaries. The pages to the left and right of the object
page are "guard pages", whose attributes are changed to a protected
state, and cause page faults on any attempted access to them. Such page
faults are then intercepted by KFENCE, which handles the fault
gracefully by reporting a memory access error.
Guarded allocations are set up based on a sample interval (can be set
via kfence.sample_interval). After expiration of the sample interval,
the next allocation through the main allocator (SLAB or SLUB) returns a
guarded allocation from the KFENCE object pool. At this point, the timer
is reset, and the next allocation is set up after the expiration of the
interval.
To enable/disable a KFENCE allocation through the main allocator's
fast-path without overhead, KFENCE relies on static branches via the
static keys infrastructure. The static branch is toggled to redirect the
allocation to KFENCE.
The KFENCE memory pool is of fixed size, and if the pool is exhausted no
further KFENCE allocations occur. The default config is conservative
with only 255 objects, resulting in a pool size of 2 MiB (with 4 KiB
pages).
We have verified by running synthetic benchmarks (sysbench I/O,
hackbench) and production server-workload benchmarks that a kernel with
KFENCE (using sample intervals 100-500ms) is performance-neutral
compared to a non-KFENCE baseline kernel.
KFENCE is inspired by GWP-ASan [1], a userspace tool with similar
properties. The name "KFENCE" is a homage to the Electric Fence Malloc
Debugger [2].
For more details, see Documentation/dev-tools/kfence.rst added in the
series -- also viewable here:
https://raw.githubusercontent.com/google/kasan/kfence/Documentation/dev-tools/kfence.rst
[1] http://llvm.org/docs/GwpAsan.html
[2] https://linux.die.net/man/3/efence
This patch (of 9):
This adds the Kernel Electric-Fence (KFENCE) infrastructure. KFENCE is a
low-overhead sampling-based memory safety error detector of heap
use-after-free, invalid-free, and out-of-bounds access errors.
KFENCE is designed to be enabled in production kernels, and has near
zero performance overhead. Compared to KASAN, KFENCE trades performance
for precision. The main motivation behind KFENCE's design, is that with
enough total uptime KFENCE will detect bugs in code paths not typically
exercised by non-production test workloads. One way to quickly achieve a
large enough total uptime is when the tool is deployed across a large
fleet of machines.
KFENCE objects each reside on a dedicated page, at either the left or
right page boundaries. The pages to the left and right of the object
page are "guard pages", whose attributes are changed to a protected
state, and cause page faults on any attempted access to them. Such page
faults are then intercepted by KFENCE, which handles the fault
gracefully by reporting a memory access error. To detect out-of-bounds
writes to memory within the object's page itself, KFENCE also uses
pattern-based redzones. The following figure illustrates the page
layout:
---+-----------+-----------+-----------+-----------+-----------+---
| xxxxxxxxx | O : | xxxxxxxxx | : O | xxxxxxxxx |
| xxxxxxxxx | B : | xxxxxxxxx | : B | xxxxxxxxx |
| x GUARD x | J : RED- | x GUARD x | RED- : J | x GUARD x |
| xxxxxxxxx | E : ZONE | xxxxxxxxx | ZONE : E | xxxxxxxxx |
| xxxxxxxxx | C : | xxxxxxxxx | : C | xxxxxxxxx |
| xxxxxxxxx | T : | xxxxxxxxx | : T | xxxxxxxxx |
---+-----------+-----------+-----------+-----------+-----------+---
Guarded allocations are set up based on a sample interval (can be set
via kfence.sample_interval). After expiration of the sample interval, a
guarded allocation from the KFENCE object pool is returned to the main
allocator (SLAB or SLUB). At this point, the timer is reset, and the
next allocation is set up after the expiration of the interval.
To enable/disable a KFENCE allocation through the main allocator's
fast-path without overhead, KFENCE relies on static branches via the
static keys infrastructure. The static branch is toggled to redirect the
allocation to KFENCE. To date, we have verified by running synthetic
benchmarks (sysbench I/O, hackbench) that a kernel compiled with KFENCE
is performance-neutral compared to the non-KFENCE baseline.
For more details, see Documentation/dev-tools/kfence.rst (added later in
the series).
[elver@google.com: fix parameter description for kfence_object_start()]
Link: https://lkml.kernel.org/r/20201106092149.GA2851373@elver.google.com
[elver@google.com: avoid stalling work queue task without allocations]
Link: https://lkml.kernel.org/r/CADYN=9J0DQhizAGB0-jz4HOBBh+05kMBXb4c0cXMS7Qi5NAJiw@mail.gmail.com
Link: https://lkml.kernel.org/r/20201110135320.3309507-1-elver@google.com
[elver@google.com: fix potential deadlock due to wake_up()]
Link: https://lkml.kernel.org/r/000000000000c0645805b7f982e4@google.com
Link: https://lkml.kernel.org/r/20210104130749.1768991-1-elver@google.com
[elver@google.com: add option to use KFENCE without static keys]
Link: https://lkml.kernel.org/r/20210111091544.3287013-1-elver@google.com
[elver@google.com: add missing copyright and description headers]
Link: https://lkml.kernel.org/r/20210118092159.145934-1-elver@google.com
Link: https://lkml.kernel.org/r/20201103175841.3495947-2-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: SeongJae Park <sjpark@amazon.de>
Co-developed-by: Marco Elver <elver@google.com>
Reviewed-by: Jann Horn <jannh@google.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Joern Engel <joern@purestorage.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There exists multiple path may do zram compaction concurrently.
1. auto-compaction triggered during memory reclaim
2. userspace utils write zram<id>/compaction node
So, multiple threads may call zs_shrinker_scan/zs_compact concurrently.
But pages_compacted is a per zsmalloc pool variable and modification
of the variable is not serialized(through under class->lock).
There are two issues here:
1. the pages_compacted may not equal to total number of pages
freed(due to concurrently add).
2. zs_shrinker_scan may not return the correct number of pages
freed(issued by current shrinker).
The fix is simple:
1. account the number of pages freed in zs_compact locally.
2. use actomic variable pages_compacted to accumulate total number.
Link: https://lkml.kernel.org/r/20210202122235.26885-1-wu-yan@tcl.com
Fixes: 860c707dca ("zsmalloc: account the number of compacted pages")
Signed-off-by: Rokudo Yan <wu-yan@tcl.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>