mm: multi-gen LRU: per-node lru_gen_folio lists

For each node, memcgs are divided into two generations: the old and
the young. For each generation, memcgs are randomly sharded into
multiple bins to improve scalability. For each bin, an RCU hlist_nulls
is virtually divided into three segments: the head, the tail and the
default.

An onlining memcg is added to the tail of a random bin in the old
generation. The eviction starts at the head of a random bin in the old
generation. The per-node memcg generation counter, whose reminder (mod
2) indexes the old generation, is incremented when all its bins become
empty.

There are four operations:
1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in
   its current generation (old or young) and updates its "seg" to
   "head";
2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in
   its current generation (old or young) and updates its "seg" to
   "tail";
3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in
   the old generation, updates its "gen" to "old" and resets its "seg"
   to "default";
4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin
   in the young generation, updates its "gen" to "young" and resets
   its "seg" to "default".

The events that trigger the above operations are:
1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
2. The first attempt to reclaim an memcg below low, which triggers
   MEMCG_LRU_TAIL;
3. The first attempt to reclaim an memcg below reclaimable size
   threshold, which triggers MEMCG_LRU_TAIL;
4. The second attempt to reclaim an memcg below reclaimable size
   threshold, which triggers MEMCG_LRU_YOUNG;
5. Attempting to reclaim an memcg below min, which triggers
   MEMCG_LRU_YOUNG;
6. Finishing the aging on the eviction path, which triggers
   MEMCG_LRU_YOUNG;
7. Offlining an memcg, which triggers MEMCG_LRU_OLD.

Note that memcg LRU only applies to global reclaim, and the
round-robin incrementing of their max_seq counters ensures the
eventual fairness to all eligible memcgs. For memcg reclaim, it still
relies on mem_cgroup_iter().

Link: https://lkml.kernel.org/r/20221222041905.2431096-7-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This commit is contained in:
Yu Zhao
2022-12-21 21:19:04 -07:00
committed by Andrew Morton
parent 77d4459a4a
commit e4dde56cd2
6 changed files with 500 additions and 35 deletions

View File

@@ -122,6 +122,18 @@ static inline bool lru_gen_in_fault(void)
return current->in_lru_fault;
}
#ifdef CONFIG_MEMCG
static inline int lru_gen_memcg_seg(struct lruvec *lruvec)
{
return READ_ONCE(lruvec->lrugen.seg);
}
#else
static inline int lru_gen_memcg_seg(struct lruvec *lruvec)
{
return 0;
}
#endif
static inline int lru_gen_from_seq(unsigned long seq)
{
return seq % MAX_NR_GENS;
@@ -297,6 +309,11 @@ static inline bool lru_gen_in_fault(void)
return false;
}
static inline int lru_gen_memcg_seg(struct lruvec *lruvec)
{
return 0;
}
static inline bool lru_gen_add_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
{
return false;