Merge tag 'for-5.12/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm

Pull device mapper updates from Mike Snitzer:

 - Fix DM integrity's HMAC support to provide enhanced security of
   internal_hash and journal_mac capabilities.

 - Various DM writecache fixes to address performance, fix table output
   to match what was provided at table creation, fix writing beyond end
   of device when shrinking underlying data device, and a couple other
   small cleanups.

 - Add DM crypt support for using trusted keys.

 - Fix deadlock when swapping to DM crypt device by throttling number of
   in-flight REQ_SWAP bios. Implemented in DM core so that other
   bio-based targets can opt-in by setting ti->limit_swap_bios.

 - Fix various inverted logic bugs in the .iterate_devices callout
   functions that are used to assess if specific feature or capability
   is supported across all devices being combined/stacked by DM.

 - Fix DM era target bugs that exposed users to lost writes or memory
   leaks.

 - Add DM core support for passing through inline crypto support of
   underlying devices. Includes block/keyslot-manager changes that
   enable extending this support to DM.

 - Various small fixes and cleanups (spelling fixes, front padding
   calculation cleanup, cleanup conditional zoned support in targets,
   etc).

* tag 'for-5.12/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm: (31 commits)
  dm: fix deadlock when swapping to encrypted device
  dm: simplify target code conditional on CONFIG_BLK_DEV_ZONED
  dm: set DM_TARGET_PASSES_CRYPTO feature for some targets
  dm: support key eviction from keyslot managers of underlying devices
  dm: add support for passing through inline crypto support
  block/keyslot-manager: Introduce functions for device mapper support
  block/keyslot-manager: Introduce passthrough keyslot manager
  dm era: only resize metadata in preresume
  dm era: Use correct value size in equality function of writeset tree
  dm era: Fix bitset memory leaks
  dm era: Verify the data block size hasn't changed
  dm era: Reinitialize bitset cache before digesting a new writeset
  dm era: Update in-core bitset after committing the metadata
  dm era: Recover committed writeset after crash
  dm writecache: use bdev_nr_sectors() instead of open-coded equivalent
  dm writecache: fix writing beyond end of underlying device when shrinking
  dm table: remove needless request_queue NULL pointer checks
  dm table: fix zoned iterate_devices based device capability checks
  dm table: fix DAX iterate_devices based device capability checks
  dm table: fix iterate_devices based device capability checks
  ...
This commit is contained in:
Linus Torvalds
2021-02-22 10:22:54 -08:00
21 changed files with 868 additions and 218 deletions

View File

@@ -409,3 +409,4 @@ int blk_crypto_evict_key(struct request_queue *q,
*/
return blk_crypto_fallback_evict_key(key);
}
EXPORT_SYMBOL_GPL(blk_crypto_evict_key);

View File

@@ -63,6 +63,11 @@ static inline void blk_ksm_hw_exit(struct blk_keyslot_manager *ksm)
pm_runtime_put_sync(ksm->dev);
}
static inline bool blk_ksm_is_passthrough(struct blk_keyslot_manager *ksm)
{
return ksm->num_slots == 0;
}
/**
* blk_ksm_init() - Initialize a keyslot manager
* @ksm: The keyslot_manager to initialize.
@@ -234,6 +239,10 @@ blk_status_t blk_ksm_get_slot_for_key(struct blk_keyslot_manager *ksm,
int err;
*slot_ptr = NULL;
if (blk_ksm_is_passthrough(ksm))
return BLK_STS_OK;
down_read(&ksm->lock);
slot = blk_ksm_find_and_grab_keyslot(ksm, key);
up_read(&ksm->lock);
@@ -354,6 +363,16 @@ int blk_ksm_evict_key(struct blk_keyslot_manager *ksm,
struct blk_ksm_keyslot *slot;
int err = 0;
if (blk_ksm_is_passthrough(ksm)) {
if (ksm->ksm_ll_ops.keyslot_evict) {
blk_ksm_hw_enter(ksm);
err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, -1);
blk_ksm_hw_exit(ksm);
return err;
}
return 0;
}
blk_ksm_hw_enter(ksm);
slot = blk_ksm_find_keyslot(ksm, key);
if (!slot)
@@ -389,6 +408,9 @@ void blk_ksm_reprogram_all_keys(struct blk_keyslot_manager *ksm)
{
unsigned int slot;
if (blk_ksm_is_passthrough(ksm))
return;
/* This is for device initialization, so don't resume the device */
down_write(&ksm->lock);
for (slot = 0; slot < ksm->num_slots; slot++) {
@@ -430,3 +452,127 @@ void blk_ksm_unregister(struct request_queue *q)
{
q->ksm = NULL;
}
/**
* blk_ksm_intersect_modes() - restrict supported modes by child device
* @parent: The keyslot manager for parent device
* @child: The keyslot manager for child device, or NULL
*
* Clear any crypto mode support bits in @parent that aren't set in @child.
* If @child is NULL, then all parent bits are cleared.
*
* Only use this when setting up the keyslot manager for a layered device,
* before it's been exposed yet.
*/
void blk_ksm_intersect_modes(struct blk_keyslot_manager *parent,
const struct blk_keyslot_manager *child)
{
if (child) {
unsigned int i;
parent->max_dun_bytes_supported =
min(parent->max_dun_bytes_supported,
child->max_dun_bytes_supported);
for (i = 0; i < ARRAY_SIZE(child->crypto_modes_supported);
i++) {
parent->crypto_modes_supported[i] &=
child->crypto_modes_supported[i];
}
} else {
parent->max_dun_bytes_supported = 0;
memset(parent->crypto_modes_supported, 0,
sizeof(parent->crypto_modes_supported));
}
}
EXPORT_SYMBOL_GPL(blk_ksm_intersect_modes);
/**
* blk_ksm_is_superset() - Check if a KSM supports a superset of crypto modes
* and DUN bytes that another KSM supports. Here,
* "superset" refers to the mathematical meaning of the
* word - i.e. if two KSMs have the *same* capabilities,
* they *are* considered supersets of each other.
* @ksm_superset: The KSM that we want to verify is a superset
* @ksm_subset: The KSM that we want to verify is a subset
*
* Return: True if @ksm_superset supports a superset of the crypto modes and DUN
* bytes that @ksm_subset supports.
*/
bool blk_ksm_is_superset(struct blk_keyslot_manager *ksm_superset,
struct blk_keyslot_manager *ksm_subset)
{
int i;
if (!ksm_subset)
return true;
if (!ksm_superset)
return false;
for (i = 0; i < ARRAY_SIZE(ksm_superset->crypto_modes_supported); i++) {
if (ksm_subset->crypto_modes_supported[i] &
(~ksm_superset->crypto_modes_supported[i])) {
return false;
}
}
if (ksm_subset->max_dun_bytes_supported >
ksm_superset->max_dun_bytes_supported) {
return false;
}
return true;
}
EXPORT_SYMBOL_GPL(blk_ksm_is_superset);
/**
* blk_ksm_update_capabilities() - Update the restrictions of a KSM to those of
* another KSM
* @target_ksm: The KSM whose restrictions to update.
* @reference_ksm: The KSM to whose restrictions this function will update
* @target_ksm's restrictions to.
*
* Blk-crypto requires that crypto capabilities that were
* advertised when a bio was created continue to be supported by the
* device until that bio is ended. This is turn means that a device cannot
* shrink its advertised crypto capabilities without any explicit
* synchronization with upper layers. So if there's no such explicit
* synchronization, @reference_ksm must support all the crypto capabilities that
* @target_ksm does
* (i.e. we need blk_ksm_is_superset(@reference_ksm, @target_ksm) == true).
*
* Note also that as long as the crypto capabilities are being expanded, the
* order of updates becoming visible is not important because it's alright
* for blk-crypto to see stale values - they only cause blk-crypto to
* believe that a crypto capability isn't supported when it actually is (which
* might result in blk-crypto-fallback being used if available, or the bio being
* failed).
*/
void blk_ksm_update_capabilities(struct blk_keyslot_manager *target_ksm,
struct blk_keyslot_manager *reference_ksm)
{
memcpy(target_ksm->crypto_modes_supported,
reference_ksm->crypto_modes_supported,
sizeof(target_ksm->crypto_modes_supported));
target_ksm->max_dun_bytes_supported =
reference_ksm->max_dun_bytes_supported;
}
EXPORT_SYMBOL_GPL(blk_ksm_update_capabilities);
/**
* blk_ksm_init_passthrough() - Init a passthrough keyslot manager
* @ksm: The keyslot manager to init
*
* Initialize a passthrough keyslot manager.
* Called by e.g. storage drivers to set up a keyslot manager in their
* request_queue, when the storage driver wants to manage its keys by itself.
* This is useful for inline encryption hardware that doesn't have the concept
* of keyslots, and for layered devices.
*/
void blk_ksm_init_passthrough(struct blk_keyslot_manager *ksm)
{
memset(ksm, 0, sizeof(*ksm));
init_rwsem(&ksm->lock);
}
EXPORT_SYMBOL_GPL(blk_ksm_init_passthrough);