Files
IronOS/source/Core/BSP/MHP30/BSP.cpp
Ben V. Brown c308fe8cc2 Pinecil v2 tune via PID (#1827)
* Start PWM after adc irq fully done

* Filter len 4

* Use comparitor 2 on timer for wrap around

* Update IRQ.cpp

* Tip measurements are uint16_t

Update BSP.cpp

Update BSP.cpp

* WiP PID

move pid tuning to config

Update PIDThread.cpp

* Handle PWM Timer gitchy comparitor

* Tuning

* Dampen with Kd

* Cleaning up

* Use TemperatureType_t for getTipTemp()

* Add small rolling average to user GUI temp to reduce flicker

* Trigger PID when adc is skipped (will use old values)
2023-10-21 08:21:08 +11:00

479 lines
13 KiB
C++

// BSP mapping functions
#include "BSP.h"
#include "BootLogo.h"
#include "I2C_Wrapper.hpp"
#include "Pins.h"
#include "Setup.h"
#include "TipThermoModel.h"
#include "Utils.h"
#include "WS2812.h"
#include "configuration.h"
#include "history.hpp"
#include "main.hpp"
#include <IRQ.h>
WS2812<GPIOA_BASE, WS2812_Pin, 1> ws2812;
volatile uint16_t PWMSafetyTimer = 0;
volatile uint8_t pendingPWM = 0;
uint16_t totalPWM = 255;
const uint16_t powerPWM = 255;
uint16_t tipSenseResistancex10Ohms = 0;
volatile bool tipMeasurementOccuring = false;
history<uint16_t, PID_TIM_HZ> rawTempFilter = {{0}, 0, 0};
void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); }
#ifdef TEMP_NTC
// Lookup table for the NTC
// Stored as ADCReading,Temp in degC
static const int32_t NTCHandleLookup[] = {
// ADC Reading , Temp in Cx10
808, 1600, //
832, 1590, //
848, 1580, //
872, 1570, //
888, 1560, //
912, 1550, //
936, 1540, //
960, 1530, //
984, 1520, //
1008, 1510, //
1032, 1500, //
1056, 1490, //
1080, 1480, //
1112, 1470, //
1136, 1460, //
1168, 1450, //
1200, 1440, //
1224, 1430, //
1256, 1420, //
1288, 1410, //
1328, 1400, //
1360, 1390, //
1392, 1380, //
1432, 1370, //
1464, 1360, //
1504, 1350, //
1544, 1340, //
1584, 1330, //
1632, 1320, //
1672, 1310, //
1720, 1300, //
1760, 1290, //
1808, 1280, //
1856, 1270, //
1912, 1260, //
1960, 1250, //
2016, 1240, //
2072, 1230, //
2128, 1220, //
2184, 1210, //
2248, 1200, //
2304, 1190, //
2368, 1180, //
2440, 1170, //
2504, 1160, //
2576, 1150, //
2648, 1140, //
2720, 1130, //
2792, 1120, //
2872, 1110, //
2952, 1100, //
3040, 1090, //
3128, 1080, //
3216, 1070, //
3304, 1060, //
3400, 1050, //
3496, 1040, //
3592, 1030, //
3696, 1020, //
3800, 1010, //
3912, 1000, //
4024, 990, //
4136, 980, //
4256, 970, //
4376, 960, //
4504, 950, //
4632, 940, //
4768, 930, //
4904, 920, //
5048, 910, //
5192, 900, //
5336, 890, //
5488, 880, //
5648, 870, //
5808, 860, //
5976, 850, //
6144, 840, //
6320, 830, //
6504, 820, //
6688, 810, //
6872, 800, //
7072, 790, //
7264, 780, //
7472, 770, //
7680, 760, //
7896, 750, //
8112, 740, //
8336, 730, //
8568, 720, //
8800, 710, //
9040, 700, //
9288, 690, //
9536, 680, //
9792, 670, //
10056, 660, //
10320, 650, //
10592, 640, //
10872, 630, //
11152, 620, //
11440, 610, //
11728, 600, //
12024, 590, //
12320, 580, //
12632, 570, //
12936, 560, //
13248, 550, //
13568, 540, //
13888, 530, //
14216, 520, //
14544, 510, //
14880, 500, //
15216, 490, //
15552, 480, //
15888, 470, //
16232, 460, //
16576, 450, //
16920, 440, //
17272, 430, //
17616, 420, //
17968, 410, //
18320, 400, //
18664, 390, //
19016, 380, //
19368, 370, //
19712, 360, //
20064, 350, //
20408, 340, //
20752, 330, //
21088, 320, //
21432, 310, //
21768, 300, //
22096, 290, //
22424, 280, //
22752, 270, //
23072, 260, //
23392, 250, //
23704, 240, //
24008, 230, //
24312, 220, //
24608, 210, //
24904, 200, //
25192, 190, //
25472, 180, //
25744, 170, //
26016, 160, //
26280, 150, //
26536, 140, //
26784, 130, //
27024, 120, //
27264, 110, //
27496, 100, //
27720, 90, //
27936, 80, //
28144, 70, //
28352, 60, //
28544, 50, //
28736, 40, //
28920, 30, //
29104, 20, //
29272, 10, //
};
const int NTCHandleLookupItems = sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t));
#endif
// These are called by the HAL after the corresponding events from the system
// timers.
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
// Period has elapsed
if (htim->Instance == TIM4) {
// STM uses this for internal functions as a counter for timeouts
HAL_IncTick();
}
}
uint16_t getHandleTemperature(uint8_t sample) {
int32_t result = getADC(0);
return Utils::InterpolateLookupTable(NTCHandleLookup, NTCHandleLookupItems, result);
}
uint16_t getTipInstantTemperature() { return getADC(2); }
uint16_t getTipRawTemp(uint8_t refresh) {
if (refresh && (tipMeasurementOccuring == false)) {
uint16_t lastSample = getTipInstantTemperature();
rawTempFilter.update(lastSample);
return lastSample;
} else {
return rawTempFilter.average();
}
}
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
// ADC maximum is 32767 == 3.3V at input == 28.05V at VIN
// Therefore we can divide down from there
// Multiplying ADC max by 4 for additional calibration options,
// ideal term is 467
static uint8_t preFillneeded = 10;
static uint32_t samples[BATTFILTERDEPTH];
static uint8_t index = 0;
if (preFillneeded) {
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
samples[i] = getADC(1);
preFillneeded--;
}
if (sample) {
samples[index] = getADC(1);
index = (index + 1) % BATTFILTERDEPTH;
}
uint32_t sum = 0;
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
sum += samples[i];
sum /= BATTFILTERDEPTH;
if (divisor == 0) {
divisor = 1;
}
return sum * 4 / divisor;
}
void setTipPWM(const uint8_t pulse, const bool shouldUseFastModePWM) {
// We can just set the timer directly
if (htim3.Instance->PSC > 20) {
htim3.Instance->CCR1 = 0;
} else {
htim3.Instance->CCR1 = pulse;
}
}
void unstick_I2C() {
GPIO_InitTypeDef GPIO_InitStruct;
int timeout = 100;
int timeout_cnt = 0;
// 1. Clear PE bit.
hi2c1.Instance->CR1 &= ~(0x0001);
/**I2C1 GPIO Configuration
PB6 ------> I2C1_SCL
PB7 ------> I2C1_SDA
*/
// 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR).
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = SCL_Pin;
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
GPIO_InitStruct.Pin = SDA_Pin;
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) {
// Move clock to release I2C
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET);
asm("nop");
asm("nop");
asm("nop");
asm("nop");
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
timeout_cnt++;
if (timeout_cnt > timeout)
return;
}
// 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = SCL_Pin;
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
GPIO_InitStruct.Pin = SDA_Pin;
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
// 13. Set SWRST bit in I2Cx_CR1 register.
hi2c1.Instance->CR1 |= 0x8000;
asm("nop");
// 14. Clear SWRST bit in I2Cx_CR1 register.
hi2c1.Instance->CR1 &= ~0x8000;
asm("nop");
// 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register
hi2c1.Instance->CR1 |= 0x0001;
// Call initialization function.
HAL_I2C_Init(&hi2c1);
}
uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; }
uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; }
void BSPInit(void) { ws2812.init(); }
void reboot() { NVIC_SystemReset(); }
void delay_ms(uint16_t count) { HAL_Delay(count); }
void setPlatePullup(bool pullingUp) {
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = PLATE_SENSOR_PULLUP_Pin;
GPIO_InitStruct.Pull = GPIO_NOPULL;
if (pullingUp) {
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port, PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_SET);
} else {
// Hi-z
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port, PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_RESET);
}
HAL_GPIO_Init(PLATE_SENSOR_PULLUP_GPIO_Port, &GPIO_InitStruct);
}
void performTipMeasurementStep(bool start) {
static uint16_t adcReadingPD1Set = 0;
static TickType_t lastMeas = 0;
// Inter state that performs the steps to measure the resistor on the tip
// Return 1 if a measurement is ongoing
// We want to perform our startup measurements of the tip resistance until we detect one fitted
// Step 1; if not setup, we turn on pullup and then wait
if (tipMeasurementOccuring == false && (start || tipSenseResistancex10Ohms == 0 || lastMeas == 0)) {
tipMeasurementOccuring = true;
tipSenseResistancex10Ohms = 0;
lastMeas = xTaskGetTickCount();
adcReadingPD1Set = 0;
setPlatePullup(true);
return;
}
// Wait 100ms for settle time
if ((xTaskGetTickCount() - lastMeas) < (TICKS_100MS)) {
return;
}
lastMeas = xTaskGetTickCount();
// We are sensing the resistance
if (adcReadingPD1Set == 0) {
// We will record the reading for PD1 being set
adcReadingPD1Set = getADC(3);
setPlatePullup(false);
return;
}
// Taking reading two
uint16_t adcReadingPD1Cleared = getADC(3);
uint32_t a = ((int)adcReadingPD1Set - (int)adcReadingPD1Cleared);
a *= 10000;
uint32_t b = ((int)adcReadingPD1Cleared + (32768 - (int)adcReadingPD1Set));
if (b) {
tipSenseResistancex10Ohms = a / b;
} else {
tipSenseResistancex10Ohms = adcReadingPD1Set = lastMeas = 0;
}
if (tipSenseResistancex10Ohms > 1100 || tipSenseResistancex10Ohms < 900) {
tipSenseResistancex10Ohms = 0; // out of range
adcReadingPD1Set = 0;
lastMeas = 0;
return;
}
tipMeasurementOccuring = false;
}
bool isTipDisconnected() {
static bool lastDisconnectedState = false;
// For the MHP30 we want to include a little extra logic in here
// As when the tip is first connected we want to measure the ~100 ohm resistor on the base of the tip
// And likewise if its removed we want to clear that measurement
/*
* plate_sensor_res = ((adc5_value_PD1_set - adc5_value_PD1_cleared) / (adc5_value_PD1_cleared + 4096 - adc5_value_PD1_set)) * 1000.0;
* */
if (tipMeasurementOccuring) {
performTipMeasurementStep(false);
return true; // We fake no tip disconnection during the measurement cycle to mask it
}
// If we are too close to the top, most likely disconnected tip
bool tipDisconnected = getTipInstantTemperature() > (4090 * 8);
if (tipDisconnected == false && lastDisconnectedState == true) {
// Tip is now disconnected
performTipMeasurementStep(true);
}
lastDisconnectedState = tipDisconnected;
return tipDisconnected;
}
uint8_t preStartChecks() {
performTipMeasurementStep(false);
return tipMeasurementOccuring ? 0 : 1;
}
void setBuzzer(bool on) {
if (on) {
htim3.Instance->CCR2 = 128;
htim3.Instance->PSC = 100; // drop down into audible range
} else {
htim3.Instance->CCR2 = 0;
htim3.Instance->PSC = 1; // revert back out of hearing range
}
}
void setStatusLED(const enum StatusLED state) {
static enum StatusLED lastState = LED_UNKNOWN;
static TickType_t buzzerEnd = 0;
if (lastState != state || state == LED_HEATING) {
switch (state) {
default:
case LED_UNKNOWN:
case LED_OFF:
ws2812.led_set_color(0, 0, 0, 0);
break;
case LED_STANDBY:
ws2812.led_set_color(0, 0, 0xFF, 0); // green
break;
case LED_HEATING: {
ws2812.led_set_color(0, ((HAL_GetTick() / 10) % 192) + 64, 0, 0); // Red fade
} break;
case LED_HOT:
ws2812.led_set_color(0, 0xFF, 0, 0); // red
break;
case LED_COOLING_STILL_HOT:
ws2812.led_set_color(0, 0xFF, 0x8C, 0x00); // Orange
break;
}
ws2812.led_update();
lastState = state;
}
}
uint64_t getDeviceID() {
//
return HAL_GetUIDw0() | ((uint64_t)HAL_GetUIDw1() << 32);
}
uint8_t preStartChecksDone() { return 1; }
uint16_t getTipThermalMass() { return TIP_THERMAL_MASS; }
uint16_t getTipInertia() { return TIP_THERMAL_MASS; }
void showBootLogo(void) { BootLogo::handleShowingLogo((uint8_t *)FLASH_LOGOADDR); }