Files
IronOS/source/Core/BSP/Sequre/BSP.cpp
Ben V. Brown a0a779faba Custom tip type selection (#1977)
* Minor doc updates

* pydoc

* Draft tip selection menu

* Start linking in manual tip resistance

* Enable on Pinecilv1 / TS10x

* Fixup drawing tip type

* Update Settings.cpp

* Rename JBC type

* Add translations

* Handle one tip type

* Refactor header includes

* Fixup translation_IT.json

* Fixing up includes

* Format

* Apply suggestions from code review

Co-authored-by: discip <53649486+discip@users.noreply.github.com>

* Update Documentation/Hardware.md

Co-authored-by: discip <53649486+discip@users.noreply.github.com>

---------

Co-authored-by: = <=>
Co-authored-by: discip <53649486+discip@users.noreply.github.com>
2024-11-01 12:20:33 +11:00

286 lines
8.6 KiB
C++

// BSP mapping functions
#include "BSP.h"
#include "BootLogo.h"
#include "FS2711.hpp"
#include "HUB238.hpp"
#include "I2C_Wrapper.hpp"
#include "Pins.h"
#include "Settings.h"
#include "Setup.h"
#include "TipThermoModel.h"
#include "configuration.h"
#include "history.hpp"
#include "main.hpp"
#include <IRQ.h>
volatile uint16_t PWMSafetyTimer = 0;
volatile uint8_t pendingPWM = 0;
const uint16_t powerPWM = 255;
static const uint8_t holdoffTicks = 15; // delay of 8 ish ms
static const uint8_t tempMeasureTicks = 15;
uint16_t totalPWM = powerPWM + tempMeasureTicks + holdoffTicks; // htim2.Init.Period, the full PWM cycle
void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); }
// Lookup table for the NTC
// We dont know exact specs, but it loooks to be roughly a 10K B=4000 NTC
// Stored as ADCReading,Temp in degC
static const uint16_t NTCHandleLookup[] = {
// ADC Reading , Temp in C
23931, 0, //
23210, 2, //
22466, 4, //
21703, 6, //
20924, 8, //
20135, 10, //
19338, 12, //
18538, 14, //
17738, 16, //
16943, 18, //
16156, 20, //
15381, 22, //
14621, 24, //
13878, 26, //
13155, 28, //
12455, 30, //
11778, 32, //
11126, 34, //
10501, 36, //
9902, 38, //
9330, 40, //
8786, 42, //
8269, 44, //
};
uint16_t getHandleTemperature(uint8_t sample) {
#ifdef TMP36_ADC1_CHANNEL
int32_t result = getADCHandleTemp(sample);
// S60 uses 10k NTC resistor
// For now not doing interpolation
for (uint32_t i = 0; i < (sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t))); i++) {
if (result > NTCHandleLookup[(i * 2) + 0]) {
return NTCHandleLookup[(i * 2) + 1] * 10;
}
}
return 45 * 10;
#else
return 0; // Not implemented
#endif
}
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
// ADC maximum is 32767 == 3.3V at input == 28.05V at VIN
// Therefore we can divide down from there
// Multiplying ADC max by 4 for additional calibration options,
// ideal term is 467
uint32_t res = getADCVin(sample);
res *= 4;
res /= divisor;
return res;
}
static void switchToFastPWM(void) {
// 20Hz
totalPWM = powerPWM + tempMeasureTicks + holdoffTicks;
htim2.Instance->ARR = totalPWM;
htim2.Instance->CCR1 = powerPWM + holdoffTicks;
htim2.Instance->CCR4 = powerPWM;
htim2.Instance->PSC = 1500;
}
void setTipPWM(const uint8_t pulse, const bool shouldUseFastModePWM) {
PWMSafetyTimer = 20; // This is decremented in the handler for PWM so that the tip pwm is
// disabled if the PID task is not scheduled often enough.
pendingPWM = pulse;
}
// These are called by the HAL after the corresponding events from the system
// timers.
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
// Period has elapsed
if (htim->Instance == TIM2) {
// we want to turn on the output again
PWMSafetyTimer--;
// We decrement this safety value so that lockups in the
// scheduler will not cause the PWM to become locked in an
// active driving state.
// While we could assume this could never happen, its a small price for
// increased safety
if (PWMSafetyTimer == 0) {
htim4.Instance->CCR3 = 0;
} else {
htim4.Instance->CCR3 = pendingPWM / 4;
}
} else if (htim->Instance == TIM1) {
// STM uses this for internal functions as a counter for timeouts
HAL_IncTick();
}
}
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) {
// This was a when the PWM for the output has timed out
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4) {
// HAL_TIM_PWM_Stop(&htim4, TIM_CHANNEL_3);
htim4.Instance->CCR3 = 0;
}
}
void unstick_I2C() {
#ifdef SCL_Pin
GPIO_InitTypeDef GPIO_InitStruct;
int timeout = 100;
int timeout_cnt = 0;
// 1. Clear PE bit.
hi2c1.Instance->CR1 &= ~(0x0001);
/**I2C1 GPIO Configuration
PB6 ------> I2C1_SCL
PB7 ------> I2C1_SDA
*/
// 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR).
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = SCL_Pin;
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
GPIO_InitStruct.Pin = SDA_Pin;
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) {
// Move clock to release I2C
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET);
asm("nop");
asm("nop");
asm("nop");
asm("nop");
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
timeout_cnt++;
if (timeout_cnt > timeout) {
return;
}
}
// 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = SCL_Pin;
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
GPIO_InitStruct.Pin = SDA_Pin;
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
// 13. Set SWRST bit in I2Cx_CR1 register.
hi2c1.Instance->CR1 |= 0x8000;
asm("nop");
// 14. Clear SWRST bit in I2Cx_CR1 register.
hi2c1.Instance->CR1 &= ~0x8000;
asm("nop");
// 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register
hi2c1.Instance->CR1 |= 0x0001;
// Call initialization function.
HAL_I2C_Init(&hi2c1);
#endif
}
uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; }
uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; }
void BSPInit(void) { switchToFastPWM(); }
void reboot() { NVIC_SystemReset(); }
void delay_ms(uint16_t count) { HAL_Delay(count); }
bool isTipDisconnected() {
uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5;
uint32_t tipTemp = TipThermoModel::getTipInC();
return tipTemp > tipDisconnectedThres;
}
void setStatusLED(const enum StatusLED state) {}
uint8_t preStartChecks() {
#if POW_PD_EXT == 1
if (!hub238_has_run_selection() && (xTaskGetTickCount() < TICKS_SECOND * 5)) {
return 0;
}
// We check if we are in a "Limited" mode; where we have to run the PWM really fast
// Where as if we are on 9V for example, the tip resistance is enough
uint16_t voltage = hub238_source_voltage();
uint16_t currentx100 = hub238_source_currentX100();
#endif
#if POW_PD_EXT == 2
if (!FS2711::has_run_selection() && (xTaskGetTickCount() < TICKS_SECOND * 5)) {
return 0;
}
uint16_t voltage = FS2711::source_voltage();
uint16_t currentx100 = FS2711::source_currentx100();
#endif
uint16_t thresholdResistancex10 = ((voltage * 1000) / currentx100) + 5;
if (getTipResistanceX10() <= thresholdResistancex10) {
// We are limited by resistance, not our current limiting, we can slow down PWM to avoid audible noise
htim4.Instance->PSC = 50; // 10 -> 500 removes audible noise
}
return 1; // We are done now
}
uint64_t getDeviceID() {
//
return HAL_GetUIDw0() | ((uint64_t)HAL_GetUIDw1() << 32);
}
uint8_t getTipResistanceX10() {
#ifdef COPPER_HEATER_COIL
// TODO
//! Warning, must never return 0.
TemperatureType_t measuredTemperature = TipThermoModel::getTipInC(false);
if (measuredTemperature < 25) {
return 50; // Start assuming under spec to soft-start
}
// Assuming a temperature rise of 0.00393 per deg c over 20C
uint32_t scaler = 393 * (measuredTemperature - 20);
return TIP_RESISTANCE + ((TIP_RESISTANCE * scaler) / 100000);
#else
uint8_t user_selected_tip = getUserSelectedTipResistance();
if (user_selected_tip == 0) {
return TIP_RESISTANCE; // Auto mode
}
return user_selected_tip;
#endif
}
bool isTipShorted() { return false; }
uint8_t preStartChecksDone() { return 1; }
uint16_t getTipThermalMass() { return TIP_THERMAL_MASS; }
uint16_t getTipInertia() { return TIP_THERMAL_INERTIA; }
void setBuzzer(bool on) {}
void showBootLogo(void) { BootLogo::handleShowingLogo((uint8_t *)FLASH_LOGOADDR); }
#ifdef CUSTOM_MAX_TEMP_C
TemperatureType_t getCustomTipMaxInC() { return MAX_TEMP_C; }
#endif