mirror of
https://github.com/Ralim/IronOS.git
synced 2025-07-23 04:13:01 +02:00
* Minor doc updates * pydoc * Draft tip selection menu * Start linking in manual tip resistance * Enable on Pinecilv1 / TS10x * Fixup drawing tip type * Update Settings.cpp * Rename JBC type * Add translations * Handle one tip type * Refactor header includes * Fixup translation_IT.json * Fixing up includes * Format * Apply suggestions from code review Co-authored-by: discip <53649486+discip@users.noreply.github.com> * Update Documentation/Hardware.md Co-authored-by: discip <53649486+discip@users.noreply.github.com> --------- Co-authored-by: = <=> Co-authored-by: discip <53649486+discip@users.noreply.github.com>
286 lines
8.6 KiB
C++
286 lines
8.6 KiB
C++
// BSP mapping functions
|
|
|
|
#include "BSP.h"
|
|
#include "BootLogo.h"
|
|
#include "FS2711.hpp"
|
|
#include "HUB238.hpp"
|
|
#include "I2C_Wrapper.hpp"
|
|
#include "Pins.h"
|
|
#include "Settings.h"
|
|
#include "Setup.h"
|
|
#include "TipThermoModel.h"
|
|
#include "configuration.h"
|
|
#include "history.hpp"
|
|
#include "main.hpp"
|
|
#include <IRQ.h>
|
|
|
|
volatile uint16_t PWMSafetyTimer = 0;
|
|
volatile uint8_t pendingPWM = 0;
|
|
const uint16_t powerPWM = 255;
|
|
static const uint8_t holdoffTicks = 15; // delay of 8 ish ms
|
|
static const uint8_t tempMeasureTicks = 15;
|
|
|
|
uint16_t totalPWM = powerPWM + tempMeasureTicks + holdoffTicks; // htim2.Init.Period, the full PWM cycle
|
|
|
|
void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); }
|
|
// Lookup table for the NTC
|
|
// We dont know exact specs, but it loooks to be roughly a 10K B=4000 NTC
|
|
// Stored as ADCReading,Temp in degC
|
|
static const uint16_t NTCHandleLookup[] = {
|
|
// ADC Reading , Temp in C
|
|
23931, 0, //
|
|
23210, 2, //
|
|
22466, 4, //
|
|
21703, 6, //
|
|
20924, 8, //
|
|
20135, 10, //
|
|
19338, 12, //
|
|
18538, 14, //
|
|
17738, 16, //
|
|
16943, 18, //
|
|
16156, 20, //
|
|
15381, 22, //
|
|
14621, 24, //
|
|
13878, 26, //
|
|
13155, 28, //
|
|
12455, 30, //
|
|
11778, 32, //
|
|
11126, 34, //
|
|
10501, 36, //
|
|
9902, 38, //
|
|
9330, 40, //
|
|
8786, 42, //
|
|
8269, 44, //
|
|
};
|
|
|
|
uint16_t getHandleTemperature(uint8_t sample) {
|
|
#ifdef TMP36_ADC1_CHANNEL
|
|
int32_t result = getADCHandleTemp(sample);
|
|
// S60 uses 10k NTC resistor
|
|
// For now not doing interpolation
|
|
for (uint32_t i = 0; i < (sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t))); i++) {
|
|
if (result > NTCHandleLookup[(i * 2) + 0]) {
|
|
return NTCHandleLookup[(i * 2) + 1] * 10;
|
|
}
|
|
}
|
|
return 45 * 10;
|
|
#else
|
|
return 0; // Not implemented
|
|
#endif
|
|
}
|
|
|
|
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
|
|
// ADC maximum is 32767 == 3.3V at input == 28.05V at VIN
|
|
// Therefore we can divide down from there
|
|
// Multiplying ADC max by 4 for additional calibration options,
|
|
// ideal term is 467
|
|
uint32_t res = getADCVin(sample);
|
|
res *= 4;
|
|
res /= divisor;
|
|
return res;
|
|
}
|
|
|
|
static void switchToFastPWM(void) {
|
|
// 20Hz
|
|
totalPWM = powerPWM + tempMeasureTicks + holdoffTicks;
|
|
htim2.Instance->ARR = totalPWM;
|
|
htim2.Instance->CCR1 = powerPWM + holdoffTicks;
|
|
htim2.Instance->CCR4 = powerPWM;
|
|
htim2.Instance->PSC = 1500;
|
|
}
|
|
|
|
void setTipPWM(const uint8_t pulse, const bool shouldUseFastModePWM) {
|
|
PWMSafetyTimer = 20; // This is decremented in the handler for PWM so that the tip pwm is
|
|
// disabled if the PID task is not scheduled often enough.
|
|
pendingPWM = pulse;
|
|
}
|
|
// These are called by the HAL after the corresponding events from the system
|
|
// timers.
|
|
|
|
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
|
|
// Period has elapsed
|
|
if (htim->Instance == TIM2) {
|
|
// we want to turn on the output again
|
|
PWMSafetyTimer--;
|
|
// We decrement this safety value so that lockups in the
|
|
// scheduler will not cause the PWM to become locked in an
|
|
// active driving state.
|
|
// While we could assume this could never happen, its a small price for
|
|
// increased safety
|
|
if (PWMSafetyTimer == 0) {
|
|
htim4.Instance->CCR3 = 0;
|
|
} else {
|
|
htim4.Instance->CCR3 = pendingPWM / 4;
|
|
}
|
|
} else if (htim->Instance == TIM1) {
|
|
// STM uses this for internal functions as a counter for timeouts
|
|
HAL_IncTick();
|
|
}
|
|
}
|
|
|
|
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) {
|
|
// This was a when the PWM for the output has timed out
|
|
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4) {
|
|
// HAL_TIM_PWM_Stop(&htim4, TIM_CHANNEL_3);
|
|
htim4.Instance->CCR3 = 0;
|
|
}
|
|
}
|
|
|
|
void unstick_I2C() {
|
|
#ifdef SCL_Pin
|
|
GPIO_InitTypeDef GPIO_InitStruct;
|
|
int timeout = 100;
|
|
int timeout_cnt = 0;
|
|
|
|
// 1. Clear PE bit.
|
|
hi2c1.Instance->CR1 &= ~(0x0001);
|
|
/**I2C1 GPIO Configuration
|
|
PB6 ------> I2C1_SCL
|
|
PB7 ------> I2C1_SDA
|
|
*/
|
|
// 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR).
|
|
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
|
|
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
|
|
|
GPIO_InitStruct.Pin = SCL_Pin;
|
|
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
|
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
|
|
|
GPIO_InitStruct.Pin = SDA_Pin;
|
|
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
|
|
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
|
|
|
|
while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) {
|
|
// Move clock to release I2C
|
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET);
|
|
asm("nop");
|
|
asm("nop");
|
|
asm("nop");
|
|
asm("nop");
|
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
|
|
|
timeout_cnt++;
|
|
if (timeout_cnt > timeout) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.
|
|
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
|
|
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
|
|
|
GPIO_InitStruct.Pin = SCL_Pin;
|
|
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
|
|
|
|
GPIO_InitStruct.Pin = SDA_Pin;
|
|
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
|
|
|
|
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
|
|
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
|
|
|
|
// 13. Set SWRST bit in I2Cx_CR1 register.
|
|
hi2c1.Instance->CR1 |= 0x8000;
|
|
|
|
asm("nop");
|
|
|
|
// 14. Clear SWRST bit in I2Cx_CR1 register.
|
|
hi2c1.Instance->CR1 &= ~0x8000;
|
|
|
|
asm("nop");
|
|
|
|
// 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register
|
|
hi2c1.Instance->CR1 |= 0x0001;
|
|
|
|
// Call initialization function.
|
|
HAL_I2C_Init(&hi2c1);
|
|
#endif
|
|
}
|
|
|
|
uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; }
|
|
uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; }
|
|
|
|
void BSPInit(void) { switchToFastPWM(); }
|
|
|
|
void reboot() { NVIC_SystemReset(); }
|
|
|
|
void delay_ms(uint16_t count) { HAL_Delay(count); }
|
|
|
|
bool isTipDisconnected() {
|
|
|
|
uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5;
|
|
uint32_t tipTemp = TipThermoModel::getTipInC();
|
|
return tipTemp > tipDisconnectedThres;
|
|
}
|
|
|
|
void setStatusLED(const enum StatusLED state) {}
|
|
uint8_t preStartChecks() {
|
|
#if POW_PD_EXT == 1
|
|
if (!hub238_has_run_selection() && (xTaskGetTickCount() < TICKS_SECOND * 5)) {
|
|
return 0;
|
|
}
|
|
// We check if we are in a "Limited" mode; where we have to run the PWM really fast
|
|
// Where as if we are on 9V for example, the tip resistance is enough
|
|
uint16_t voltage = hub238_source_voltage();
|
|
uint16_t currentx100 = hub238_source_currentX100();
|
|
#endif
|
|
#if POW_PD_EXT == 2
|
|
if (!FS2711::has_run_selection() && (xTaskGetTickCount() < TICKS_SECOND * 5)) {
|
|
return 0;
|
|
}
|
|
uint16_t voltage = FS2711::source_voltage();
|
|
uint16_t currentx100 = FS2711::source_currentx100();
|
|
#endif
|
|
|
|
uint16_t thresholdResistancex10 = ((voltage * 1000) / currentx100) + 5;
|
|
|
|
if (getTipResistanceX10() <= thresholdResistancex10) {
|
|
// We are limited by resistance, not our current limiting, we can slow down PWM to avoid audible noise
|
|
htim4.Instance->PSC = 50; // 10 -> 500 removes audible noise
|
|
}
|
|
|
|
return 1; // We are done now
|
|
}
|
|
uint64_t getDeviceID() {
|
|
//
|
|
return HAL_GetUIDw0() | ((uint64_t)HAL_GetUIDw1() << 32);
|
|
}
|
|
|
|
uint8_t getTipResistanceX10() {
|
|
#ifdef COPPER_HEATER_COIL
|
|
|
|
// TODO
|
|
//! Warning, must never return 0.
|
|
TemperatureType_t measuredTemperature = TipThermoModel::getTipInC(false);
|
|
if (measuredTemperature < 25) {
|
|
return 50; // Start assuming under spec to soft-start
|
|
}
|
|
|
|
// Assuming a temperature rise of 0.00393 per deg c over 20C
|
|
|
|
uint32_t scaler = 393 * (measuredTemperature - 20);
|
|
|
|
return TIP_RESISTANCE + ((TIP_RESISTANCE * scaler) / 100000);
|
|
#else
|
|
uint8_t user_selected_tip = getUserSelectedTipResistance();
|
|
if (user_selected_tip == 0) {
|
|
return TIP_RESISTANCE; // Auto mode
|
|
}
|
|
return user_selected_tip;
|
|
#endif
|
|
}
|
|
bool isTipShorted() { return false; }
|
|
uint8_t preStartChecksDone() { return 1; }
|
|
|
|
uint16_t getTipThermalMass() { return TIP_THERMAL_MASS; }
|
|
uint16_t getTipInertia() { return TIP_THERMAL_INERTIA; }
|
|
|
|
void setBuzzer(bool on) {}
|
|
|
|
void showBootLogo(void) { BootLogo::handleShowingLogo((uint8_t *)FLASH_LOGOADDR); }
|
|
|
|
#ifdef CUSTOM_MAX_TEMP_C
|
|
TemperatureType_t getCustomTipMaxInC() { return MAX_TEMP_C; }
|
|
#endif
|