Files
IronOS/source/Core/Drivers/OLED.cpp
2023-06-29 18:46:19 +10:00

769 lines
25 KiB
C++

/*
* OLED.cpp
*
* Created on: 29Aug.,2017
* Author: Ben V. Brown
*/
#include "Buttons.hpp"
#include "Translation.h"
#include "cmsis_os.h"
#include "configuration.h"
#include <OLED.hpp>
#include <stdlib.h>
#include <string.h>
// rendering to the buffer
uint8_t *OLED::stripPointers[4]; // Pointers to the strips to allow for buffer having extra content
bool OLED::inLeftHandedMode; // Whether the screen is in left or not (used for
// offsets in GRAM)
OLED::DisplayState OLED::displayState;
int16_t OLED::cursor_x, OLED::cursor_y;
bool OLED::initDone = false;
uint8_t OLED::displayOffset;
uint8_t OLED::screenBuffer[16 + (OLED_WIDTH * (OLED_HEIGHT / 8)) + 10]; // The data buffer
uint8_t OLED::secondFrameBuffer[16 + (OLED_WIDTH * (OLED_HEIGHT / 8)) + 10];
uint32_t OLED::displayChecksum;
/*Setup params for the OLED screen*/
/*http://www.displayfuture.com/Display/datasheet/controller/SSD1307.pdf*/
/*All commands are prefixed with 0x80*/
/*Data packets are prefixed with 0x40*/
I2C_CLASS::I2C_REG OLED_Setup_Array[] = {
/**/
{0x80, 0xAE, 0}, /*Display off*/
{0x80, 0xD3, 0}, /*Set display clock divide ratio / osc freq*/
{0x80, 0x52, 0}, /*Divide ratios*/
{0x80, 0xA8, 0}, /*Set Multiplex Ratio*/
{0x80, OLED_HEIGHT - 1, 0}, /*Multiplex ratio adjusts how far down the matrix it scans*/
{0x80, 0xC0, 0}, /*Set COM Scan direction*/
{0x80, 0xD3, 0}, /*Set vertical Display offset*/
{0x80, 0x00, 0}, /*0 Offset*/
{0x80, 0x40, 0}, /*Set Display start line to 0*/
#ifdef OLED_SEGMENT_MAP_REVERSED
{0x80, 0xA1, 0}, /*Set Segment remap to normal*/
#else
{0x80, 0xA0, 0}, /*Set Segment remap to normal*/
#endif
{0x80, 0x8D, 0}, /*Charge Pump*/
{0x80, 0x14, 0}, /*Charge Pump settings*/
{0x80, 0xDA, 0}, /*Set VCOM Pins hardware config*/
{0x80, OLED_VCOM_LAYOUT, 0}, /*Combination 0x2 or 0x12 depending on OLED model*/
{0x80, 0x81, 0}, /*Brightness*/
{0x80, 0x00, 0}, /*^0*/
{0x80, 0xD9, 0}, /*Set pre-charge period*/
{0x80, 0xF1, 0}, /*Pre charge period*/
{0x80, 0xDB, 0}, /*Adjust VCOMH regulator ouput*/
{0x80, 0x30, 0}, /*VCOM level*/
{0x80, 0xA4, 0}, /*Enable the display GDDR*/
{0x80, 0XA6, 0}, /*Normal display*/
{0x80, 0x20, 0}, /*Memory Mode*/
{0x80, 0x00, 0}, /*Wrap memory*/
{0x80, 0xAF, 0}, /*Display on*/
};
// Setup based on the SSD1307 and modified for the SSD1306
const uint8_t REFRESH_COMMANDS[17] = {
// Set display ON:
0x80,
0xAF, // cmd
// Set column address:
// A[6:0] - Column start address = 0x20
// B[6:0] - Column end address = 0x7F
0x80,
0x21, // cmd
0x80,
OLED_GRAM_START, // A
0x80,
OLED_GRAM_END, // B
// Set COM output scan direction (normal mode, COM0 to COM[N-1])
0x80,
0xC0,
// Set page address:
// A[2:0] - Page start address = 0
// B[2:0] - Page end address = 1
0x80,
0x22, // cmd
0x80,
0x00, // A
0x80,
(OLED_HEIGHT / 8), // B
// Start of data
0x40,
};
/*
* Animation timing function that follows a bezier curve.
* @param t A given percentage value [0..<100]
* Returns a new percentage value with ease in and ease out.
* Original floating point formula: t * t * (3.0f - 2.0f * t);
*/
static uint16_t easeInOutTiming(uint16_t t) { return t * t * (300 - 2 * t) / 10000; }
/*
* Returns the value between a and b, using a percentage value t.
* @param a The value associated with 0%
* @param b The value associated with 100%
* @param t The percentage [0..<100]
*/
static uint16_t lerp(uint16_t a, uint16_t b, uint16_t t) { return a + t * (b - a) / 100; }
void OLED::initialize() {
cursor_x = cursor_y = 0;
inLeftHandedMode = false;
#ifdef OLED_128x32
stripPointers[0] = &screenBuffer[FRAMEBUFFER_START];
stripPointers[1] = &screenBuffer[FRAMEBUFFER_START + OLED_WIDTH];
stripPointers[2] = &screenBuffer[FRAMEBUFFER_START + 2 * OLED_WIDTH];
stripPointers[3] = &screenBuffer[FRAMEBUFFER_START + 3 * OLED_WIDTH];
#else
stripPointers[0] = &screenBuffer[FRAMEBUFFER_START];
stripPointers[1] = &screenBuffer[FRAMEBUFFER_START + OLED_WIDTH];
#endif
displayOffset = 0;
memcpy(&screenBuffer[0], &REFRESH_COMMANDS[0], sizeof(REFRESH_COMMANDS));
// Set the display to be ON once the settings block is sent and send the
// initialisation data to the OLED.
for (int tries = 0; tries < 10; tries++) {
if (I2C_CLASS::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0]))) {
tries = 11;
}
}
setDisplayState(DisplayState::ON);
initDone = true;
}
void OLED::setFramebuffer(uint8_t *buffer) {
stripPointers[0] = &buffer[FRAMEBUFFER_START];
stripPointers[1] = &buffer[FRAMEBUFFER_START + OLED_WIDTH];
#ifdef OLED_128x32
stripPointers[2] = &buffer[FRAMEBUFFER_START + (2 * OLED_WIDTH)];
stripPointers[3] = &buffer[FRAMEBUFFER_START + (3 * OLED_WIDTH)];
#endif
}
/*
* Prints a char to the screen.
* UTF font handling is done using the two input chars.
* Precursor is the command char that is used to select the table.
*/
void OLED::drawChar(const uint16_t charCode, const FontStyle fontStyle) {
const uint8_t *currentFont;
static uint8_t fontWidth, fontHeight;
uint16_t index;
switch (fontStyle) {
case FontStyle::EXTRAS:
currentFont = ExtraFontChars;
index = charCode;
fontHeight = 16;
fontWidth = 12;
break;
case FontStyle::SMALL:
case FontStyle::LARGE:
default:
// TODO handle 4 lines
if (charCode == '\x01' && cursor_y == 0) { // 0x01 is used as new line char
setCursor(0, 8);
return;
} else if (charCode <= 0x01) {
return;
}
currentFont = nullptr;
index = 0;
switch (fontStyle) {
case FontStyle::SMALL:
fontHeight = 8;
fontWidth = 6;
break;
case FontStyle::LARGE:
default:
fontHeight = 16;
fontWidth = 12;
break;
}
currentFont = fontStyle == FontStyle::SMALL ? FontSectionInfo.font06_start_ptr : FontSectionInfo.font12_start_ptr;
index = charCode - 2;
break;
}
const uint8_t *charPointer = currentFont + ((fontWidth * (fontHeight / 8)) * index);
drawArea(cursor_x, cursor_y, fontWidth, fontHeight, charPointer);
cursor_x += fontWidth;
}
/*
* Draws a one pixel wide scrolling indicator. y is the upper vertical position
* of the indicator in pixels (0..<16).
*/
void OLED::drawScrollIndicator(uint8_t y, uint8_t height) {
union u_type {
uint16_t whole;
uint8_t strips[2];
} column;
column.whole = (1 << height) - 1;
column.whole <<= y;
// Draw a one pixel wide bar to the left with a single pixel as
// the scroll indicator.
fillArea(OLED_WIDTH - 1, 0, 1, 8, column.strips[0]);
fillArea(OLED_WIDTH - 1, 8, 1, 8, column.strips[1]);
}
/**
* Masks (removes) the scrolling indicator, i.e. clears the rightmost column
* on the screen. This operates directly on the OLED graphics RAM, as this
* is intended to be used before calling `OLED::transitionScrollDown()`.
*/
void OLED::maskScrollIndicatorOnOLED() {
// The right-most column depends on the screen rotation, so just take
// it from the screen buffer which is updated by `OLED::setRotation`.
uint8_t rightmostColumn = screenBuffer[7];
uint8_t maskCommands[] = {
// Set column address:
// A[6:0] - Column start address = rightmost column
// B[6:0] - Column end address = rightmost column
0x80,
0x21, // cmd
0x80,
rightmostColumn, // A
0x80,
rightmostColumn, // B
// Start of data
0x40,
#ifdef OLED_128x32
0x00,
0x00,
#endif
// Clears two 8px strips
0x00,
0x00,
};
I2C_CLASS::Transmit(DEVICEADDR_OLED, maskCommands, sizeof(maskCommands));
}
/**
* Plays a transition animation between two framebuffers.
* @param forwardNavigation Direction of the navigation animation.
*
* If forward is true, this displays a forward navigation to the second framebuffer contents.
* Otherwise a rewinding navigation animation is shown to the second framebuffer contents.
*/
void OLED::transitionSecondaryFramebuffer(bool forwardNavigation) {
uint8_t *stripBackPointers[4];
stripBackPointers[0] = &secondFrameBuffer[FRAMEBUFFER_START + 0];
stripBackPointers[1] = &secondFrameBuffer[FRAMEBUFFER_START + OLED_WIDTH];
#ifdef OLED_128x32
stripBackPointers[2] = &secondFrameBuffer[OLED_WIDTH * 2];
stripBackPointers[3] = &secondFrameBuffer[OLED_WIDTH * 3];
#endif
TickType_t totalDuration = TICKS_100MS * 5; // 500ms
TickType_t duration = 0;
TickType_t start = xTaskGetTickCount();
uint8_t offset = 0;
while (duration <= totalDuration) {
duration = xTaskGetTickCount() - start;
uint16_t progress = ((duration * 100) / totalDuration); // Percentage of the period we are through for animation
progress = easeInOutTiming(progress);
progress = lerp(0, OLED_WIDTH, progress);
// Constrain
if (progress > OLED_WIDTH) {
progress = OLED_WIDTH;
}
// When forward, current contents move to the left out.
// Otherwise the contents move to the right out.
uint8_t oldStart = forwardNavigation ? 0 : progress;
uint8_t oldPrevious = forwardNavigation ? progress - offset : offset;
// Content from the second framebuffer moves in from the right (forward)
// or from the left (not forward).
uint8_t newStart = forwardNavigation ? OLED_WIDTH - progress : 0;
uint8_t newEnd = forwardNavigation ? 0 : OLED_WIDTH - progress;
offset = progress;
memmove(&stripPointers[0][oldStart], &stripPointers[0][oldPrevious], OLED_WIDTH - progress);
memmove(&stripPointers[1][oldStart], &stripPointers[1][oldPrevious], OLED_WIDTH - progress);
#ifdef OLED_128x32
memmove(&stripPointers[2][oldStart], &stripPointers[2][oldPrevious], OLED_WIDTH - progress);
memmove(&stripPointers[3][oldStart], &stripPointers[3][oldPrevious], OLED_WIDTH - progress);
#endif
memmove(&stripPointers[0][newStart], &stripBackPointers[0][newEnd], progress);
memmove(&stripPointers[1][newStart], &stripBackPointers[1][newEnd], progress);
#ifdef OLED_128x32
memmove(&stripPointers[2][newStart], &stripBackPointers[2][newEnd], progress);
memmove(&stripPointers[3][newStart], &stripBackPointers[3][newEnd], progress);
#endif
TickType_t start = xTaskGetTickCount();
refresh(); // Now refresh to write out the contents to the new page
vTaskDelayUntil(&start, TICKS_100MS / 7);
if (getButtonState() != BUTTON_NONE) {
return;
}
}
}
void OLED::useSecondaryFramebuffer(bool useSecondary) {
if (useSecondary) {
setFramebuffer(secondFrameBuffer);
} else {
setFramebuffer(screenBuffer);
}
}
/**
* This assumes that the current display output buffer has the current on screen contents
* Then the secondary buffer has the "new" contents to be slid up onto the screen
* Sadly we cant use the hardware scroll as some devices with the 128x32 screens dont have the GRAM for holding both screens at once
*
* **This function blocks until the transition has completed or user presses button**
*/
void OLED::transitionScrollDown() {
for (uint8_t heightPos = 0; heightPos < OLED_HEIGHT; heightPos++) {
// For each line, we shuffle all bits up a row
for (uint8_t xPos = 0; xPos < OLED_WIDTH; xPos++) {
const uint16_t firstStripPos = FRAMEBUFFER_START + xPos;
const uint16_t secondStripPos = firstStripPos + OLED_WIDTH;
#ifdef OLED_128x32
// For 32 pixel high OLED's we have four strips to tailchain
const uint16_t thirdStripPos = secondStripPos + OLED_WIDTH;
const uint16_t fourthStripPos = thirdStripPos + OLED_WIDTH;
// Move the MSB off the first strip, and pop MSB from second strip onto the first strip
screenBuffer[firstStripPos] = (screenBuffer[firstStripPos] >> 1) | ((screenBuffer[secondStripPos] & 0x01) << 7);
// Now shuffle off the second strip
screenBuffer[secondStripPos] = (screenBuffer[secondStripPos] >> 1) | ((screenBuffer[thirdStripPos] & 0x01) << 7);
// Now shuffle off the third strip
screenBuffer[thirdStripPos] = (screenBuffer[thirdStripPos] >> 1) | ((screenBuffer[fourthStripPos] & 0x01) << 7);
// Now forth strip gets the start of the new buffer
screenBuffer[fourthStripPos] = (screenBuffer[fourthStripPos] >> 1) | ((secondFrameBuffer[firstStripPos] & 0x01) << 7);
// Now cycle all the secondary buffers
secondFrameBuffer[firstStripPos] = (secondFrameBuffer[firstStripPos] >> 1) | ((secondFrameBuffer[secondStripPos] & 0x01) << 7);
secondFrameBuffer[secondStripPos] = (secondFrameBuffer[secondStripPos] >> 1) | ((secondFrameBuffer[thirdStripPos] & 0x01) << 7);
secondFrameBuffer[thirdStripPos] = (secondFrameBuffer[thirdStripPos] >> 1) | ((secondFrameBuffer[fourthStripPos] & 0x01) << 7);
// Finally on the bottom row; we shuffle it up ready
secondFrameBuffer[fourthStripPos] >>= 1;
#else
// Move the MSB off the first strip, and pop MSB from second strip onto the first strip
screenBuffer[firstStripPos] = (screenBuffer[firstStripPos] >> 1) | ((screenBuffer[secondStripPos] & 0x01) << 7);
// Now shuffle off the second strip MSB, and replace it with the MSB of the secondary buffer
screenBuffer[secondStripPos] = (screenBuffer[secondStripPos] >> 1) | ((secondFrameBuffer[firstStripPos] & 0x01) << 7);
// Finally, do the shuffle on the second frame buffer
secondFrameBuffer[firstStripPos] = (secondFrameBuffer[firstStripPos] >> 1) | ((secondFrameBuffer[secondStripPos] & 0x01) << 7);
// Finally on the bottom row; we shuffle it up ready
secondFrameBuffer[secondStripPos] >>= 1;
#endif
}
if (getButtonState() != BUTTON_NONE) {
// Exit early, but have to transition whole buffer
memcpy(screenBuffer + FRAMEBUFFER_START, secondFrameBuffer + FRAMEBUFFER_START, sizeof(screenBuffer) - FRAMEBUFFER_START);
refresh(); // Now refresh to write out the contents to the new page
return;
}
TickType_t start = xTaskGetTickCount();
refresh(); // Now refresh to write out the contents to the new page
vTaskDelayUntil(&start, TICKS_100MS / 7);
}
}
void OLED::setRotation(bool leftHanded) {
#ifdef OLED_FLIP
leftHanded = !leftHanded;
#endif
if (inLeftHandedMode == leftHanded) {
return;
}
#ifdef OLED_SEGMENT_MAP_REVERSED
if (!leftHanded) {
OLED_Setup_Array[9].val = 0xA1;
} else {
OLED_Setup_Array[9].val = 0xA0;
}
#else
if (leftHanded) {
OLED_Setup_Array[9].val = 0xA1;
} else {
OLED_Setup_Array[9].val = 0xA0;
}
#endif
// send command struct again with changes
if (leftHanded) {
OLED_Setup_Array[5].val = 0xC8; // c1?
} else {
OLED_Setup_Array[5].val = 0xC0;
}
I2C_CLASS::writeRegistersBulk(DEVICEADDR_OLED, OLED_Setup_Array, sizeof(OLED_Setup_Array) / sizeof(OLED_Setup_Array[0]));
osDelay(TICKS_10MS);
inLeftHandedMode = leftHanded;
screenBuffer[5] = inLeftHandedMode ? OLED_GRAM_START_FLIP : OLED_GRAM_START; // display is shifted by 32 in left handed
// mode as driver ram is 128 wide
screenBuffer[7] = inLeftHandedMode ? OLED_GRAM_END_FLIP : OLED_GRAM_END; // End address of the ram segment we are writing to (96 wide)
screenBuffer[9] = inLeftHandedMode ? 0xC8 : 0xC0;
// Force a screen refresh
const int len = FRAMEBUFFER_START + (OLED_WIDTH * (OLED_HEIGHT / 8));
I2C_CLASS::Transmit(DEVICEADDR_OLED, screenBuffer, len);
osDelay(TICKS_10MS);
checkDisplayBufferChecksum();
}
void OLED::setBrightness(uint8_t contrast) {
OLED_Setup_Array[15].val = contrast;
I2C_CLASS::writeRegistersBulk(DEVICEADDR_OLED, &OLED_Setup_Array[14], 2);
}
void OLED::setInverseDisplay(bool inverse) {
uint8_t normalInverseCmd = inverse ? 0xA7 : 0xA6;
OLED_Setup_Array[21].val = normalInverseCmd;
I2C_CLASS::I2C_RegisterWrite(DEVICEADDR_OLED, 0x80, normalInverseCmd);
}
void OLED::printBounded(const char *str, const uint8_t x, const uint8_t y, const uint8_t w, const uint8_t h, FontStyle fontStyle) {
setCursor(x, y);
const uint8_t *next = reinterpret_cast<const uint8_t *>(str);
// Determine font size by newline magic marker
if (fontStyle == FontStyle::FROM_TEXT) {
fontStyle = FontStyle::SMALL;
if (next[0] == 0x01) {
fontStyle = FontStyle::LARGE;
next++;
}
} else if (fontStyle == FontStyle::FROM_HEIGHT) {
if (h > get_fontstyle_height(FontStyle::SMALL)) {
fontStyle = FontStyle::LARGE;
} else {
fontStyle = FontStyle::SMALL;
}
}
// Now we walk and print
while (next[0]) {
uint16_t index;
if (next[0] <= 0xF0) {
index = next[0];
next++;
} else {
if (!next[1]) {
return;
}
index = (next[0] - 0xF0) * 0xFF - 15 + next[1];
next += 2;
}
if (index > 0x01) {
// Not a newline or terminator
// Need to make sure we clip
if (cursor_x >= (x + w)) {
// About to write out of bounds, wrap
if (fontStyle == FontStyle::SMALL) {
cursor_y += 8;
} else {
cursor_y += 16;
}
}
if (cursor_y >= y + h) {
// Clipping off bottom, yeet
return;
}
}
drawChar(index, fontStyle);
}
}
// print a string to the current cursor location, len chars MAX
void OLED::print(const char *const str, FontStyle fontStyle, uint8_t len) {
const uint8_t *next = reinterpret_cast<const uint8_t *>(str);
if (next[0] == 0x01) {
fontStyle = FontStyle::LARGE;
next++;
}
while (next[0] && len--) {
uint16_t index;
if (next[0] <= 0xF0) {
index = next[0];
next++;
} else {
if (!next[1]) {
return;
}
index = (next[0] - 0xF0) * 0xFF - 15 + next[1];
next += 2;
}
drawChar(index, fontStyle);
}
}
/**
* Prints a static string message designed to use the whole screen, starting
* from the top-left corner.
*
* If the message starts with a newline (`\\x01`), the string starting from
* after the newline is printed in the large font. Otherwise, the message
* is printed in the small font.
*
* @param string The string message to be printed
*/
void OLED::printWholeScreen(const char *string) {
setCursor(0, 0);
if (string[0] == '\x01') {
// Empty first line means that this uses large font (for CJK).
OLED::print(string + 1, FontStyle::LARGE);
} else {
OLED::print(string, FontStyle::SMALL);
}
}
inline void stripLeaderZeros(char *buffer, uint8_t places) {
// Removing the leading zero's by swapping them to SymbolSpace
// Stop 1 short so that we dont blank entire number if its zero
for (int i = 0; i < (places - 1); i++) {
if (buffer[i] == 2) {
buffer[i] = LargeSymbolSpace[0];
} else {
return;
}
}
}
void OLED::drawHex(uint32_t x, FontStyle fontStyle, uint8_t digits) {
// print number to hex
for (uint_fast8_t i = 0; i < digits; i++) {
uint16_t value = (x >> (4 * (7 - i))) & 0b1111;
drawChar(value + 2, fontStyle);
}
}
void OLED::printNumberBounded(const uint16_t num, bool noLeaderZeros, const uint8_t x, const uint8_t y, const uint8_t w, const uint8_t h) {
// Print the number to the screen, bounded by the given dimension
FontStyle fontStyle = get_fontstyle_fromHeight(h);
uint8_t places = w / get_fontstyle_width(fontStyle);
if (places > 5)
places = 5;
char buffer[7] = {0, 0, 0, 0, 0, 0, 0};
uint16_t number = num;
for (int i = places; i >= 0; i--) {
buffer[i] = 2 /*Skew past null and newline*/ + number % 10;
number /= 10;
}
if (noLeaderZeros)
stripLeaderZeros(buffer, places);
printBounded(buffer, x, y, w, h, FontStyle::FROM_HEIGHT);
}
// maximum places is 5
void OLED::printNumber(uint16_t number, uint8_t places, FontStyle fontStyle, bool noLeaderZeros) {
char buffer[7] = {0};
if (places >= 5) {
buffer[5] = 2 + number % 10;
number /= 10;
}
if (places > 4) {
buffer[4] = 2 + number % 10;
number /= 10;
}
if (places > 3) {
buffer[3] = 2 + number % 10;
number /= 10;
}
if (places > 2) {
buffer[2] = 2 + number % 10;
number /= 10;
}
if (places > 1) {
buffer[1] = 2 + number % 10;
number /= 10;
}
buffer[0] = 2 + number % 10;
if (noLeaderZeros)
stripLeaderZeros(buffer, places);
print(buffer, fontStyle);
}
void OLED::debugNumber(int32_t val, FontStyle fontStyle) {
if (abs(val) > 99999) {
OLED::print(LargeSymbolSpace, fontStyle); // out of bounds
return;
}
if (val >= 0) {
OLED::print(LargeSymbolSpace, fontStyle);
OLED::printNumber(val, 5, fontStyle);
} else {
OLED::print(LargeSymbolMinus, fontStyle);
OLED::printNumber(-val, 5, fontStyle);
}
}
void OLED::drawSymbol(uint8_t symbolID) {
// draw a symbol to the current cursor location
drawChar(symbolID, FontStyle::EXTRAS);
}
// Draw an area, but y must be aligned on 0/8 offset
void OLED::drawArea(int16_t x, int8_t y, uint8_t wide, uint8_t height, const uint8_t *ptr) {
// Splat this from x->x+wide in two strides
if (x <= -wide)
return; // cutoffleft
if (x > 96)
return; // cutoff right
uint8_t visibleStart = 0;
uint8_t visibleEnd = wide;
// trimming to draw partials
if (x < 0) {
visibleStart -= x; // subtract negative value == add absolute value
}
if (x + wide > 96) {
visibleEnd = 96 - x;
}
if (y == 0) {
// Splat first line of data
for (uint8_t xx = visibleStart; xx < visibleEnd; xx++) {
stripPointers[0][xx + x] = ptr[xx];
}
}
if (y == 8 || height >= 16) {
// Splat the second line
for (uint8_t xx = visibleStart; xx < visibleEnd; xx++) {
stripPointers[1][x + xx] = ptr[xx + (height == 16 ? wide : 0)];
}
}
// TODO NEEDS HEIGHT HANDLERS for 24/32
}
// Draw an area, but y must be aligned on 0/8 offset
// For data which has octets swapped in a 16-bit word.
void OLED::drawAreaSwapped(int16_t x, int8_t y, uint8_t wide, uint8_t height, const uint8_t *ptr) {
// Splat this from x->x+wide in two strides
if (x <= -wide)
return; // cutoffleft
if (x > 96)
return; // cutoff right
uint8_t visibleStart = 0;
uint8_t visibleEnd = wide;
// trimming to draw partials
if (x < 0) {
visibleStart -= x; // subtract negative value == add absolute value
}
if (x + wide > 96) {
visibleEnd = 96 - x;
}
if (y == 0) {
// Splat first line of data
for (uint8_t xx = visibleStart; xx < visibleEnd; xx += 2) {
stripPointers[0][xx + x] = ptr[xx + 1];
stripPointers[0][xx + x + 1] = ptr[xx];
}
}
if (y == 8 || height == 16) {
// Splat the second line
for (uint8_t xx = visibleStart; xx < visibleEnd; xx += 2) {
stripPointers[1][x + xx] = ptr[xx + 1 + (height == 16 ? wide : 0)];
stripPointers[1][x + xx + 1] = ptr[xx + (height == 16 ? wide : 0)];
}
}
}
void OLED::fillArea(int16_t x, int8_t y, uint8_t wide, uint8_t height, const uint8_t value) {
// Splat this from x->x+wide in two strides
if (x <= -wide)
return; // cutoffleft
if (x > 96)
return; // cutoff right
uint8_t visibleStart = 0;
uint8_t visibleEnd = wide;
// trimming to draw partials
if (x < 0) {
visibleStart -= x; // subtract negative value == add absolute value
}
if (x + wide > 96) {
visibleEnd = 96 - x;
}
if (y == 0) {
// Splat first line of data
for (uint8_t xx = visibleStart; xx < visibleEnd; xx++) {
stripPointers[0][xx + x] = value;
}
}
if (y == 8 || height == 16) {
// Splat the second line
for (uint8_t xx = visibleStart; xx < visibleEnd; xx++) {
stripPointers[1][x + xx] = value;
}
}
}
void OLED::drawFilledRect(uint8_t x0, uint8_t y0, uint8_t x1, uint8_t y1, bool clear) {
// Draw this in 3 sections
// This is basically a N wide version of vertical line
// Step 1 : Draw in the top few pixels that are not /8 aligned
// LSB is at the top of the screen
uint8_t mask = 0xFF;
if (y0) {
mask = mask << (y0 % 8);
for (uint8_t col = x0; col < x1; col++)
if (clear)
stripPointers[0][(y0 / 8) * 96 + col] &= ~mask;
else
stripPointers[0][(y0 / 8) * 96 + col] |= mask;
}
// Next loop down the line the total number of solids
if (y0 / 8 != y1 / 8)
for (uint8_t col = x0; col < x1; col++)
for (uint8_t r = (y0 / 8); r < (y1 / 8); r++) {
// This gives us the row index r
if (clear)
stripPointers[0][(r * 96) + col] = 0;
else
stripPointers[0][(r * 96) + col] = 0xFF;
}
// Finally draw the tail
mask = ~(mask << (y1 % 8));
for (uint8_t col = x0; col < x1; col++)
if (clear)
stripPointers[0][(y1 / 8) * 96 + col] &= ~mask;
else
stripPointers[0][(y1 / 8) * 96 + col] |= mask;
}
void OLED::drawHeatSymbol(uint8_t state) {
// Draw symbol 14
// Then draw over it, the bottom 5 pixels always stay. 8 pixels above that are
// the levels masks the symbol nicely
state /= 31; // 0-> 8 range
// Then we want to draw down (16-(5+state)
uint8_t cursor_x_temp = cursor_x;
drawSymbol(14);
drawFilledRect(cursor_x_temp, 0, cursor_x_temp + 12, 2 + (8 - state), true);
}
bool OLED::isInitDone() { return initDone; }