Files
IronOS/source/Core/BSP/Miniware/BSP.cpp
Ben V. Brown 1fbcdcdf98 Pinecil V2 (#1341)
* Add SDK

* fork

* massaging makefile

* Drop git module

* Bring in sdk as its broken

Far, Far to much crap to fix with regex now

* Remove bl706

* rf_para_flash_t is missing defs

* Remove crapton of junk

* Remove yet more

* Poking I2C

* Update peripheral_config.h

* Update pinmux_config.h

* Update preRTOS.cpp

* Update main.hpp

* Setup template

* Verbose boot

* I2C ish

* Update I2C_Wrapper.cpp

* Update main.cpp

* Turn off I2C reading for now

* Display running

* Roughing out scheduling timer0

* Starting ADC setup

* Working scheduling of ADC 🎉

* Format adc headers

* Update IRQ.cpp

* Buttons working

* Slow down I2C

* Poking IRQ

* Larger stack required

* Accel on

* Trying to chase down why __libc_init_array isnt working yet

* Working c++

* Cleanup

* Bump stacks

* I2C wake part workaround

* Cleanup

* Working PWM init

* qc draft

* Hookup PWM

* Stable enough ADC

* ADC timing faster + timer without HAL

* Silence

* Remove boot banner

* Tuning in ADC

* Wake PID after ADC

* Remove unused hal

* Draft flash settings

* Working settings save & restore

* Update to prod model

* Cleanup

* NTC thermistor

* Correct adc gain

* Rough tip resistance progress

* Scratch out resistance awareness of the tip

* better adc settings

* Tweaking ADC

* ADC tweaking

* Make adc range scalable

* Update Dockerfile

* Update configuration.h

* Can read same ADC twice in a row

* ADC Setup

* Update PIDThread.cpp

* Lesser adc backoff

* Update USBPD.h

* Add device ID

* Update BSP_Power.h

* Update BSP.cpp

* DrawHex dynamicLength

* Shorter ID padding

* Show validation code

* tip measurement

* Create access for w0w1

* Expose w0 w1

* Enable debug

* crc32

* Device validation

* wip starting epr

* Logic refactor

* Safer PWM Init

* PD cleanups

* Update bl702_pwm.c

* Update power.cpp

* Update usb-pd

* io

* EPR decode

* Better gui for showing pd specs

* Rough handler for capabilities

* EPR

* Fix > 25V input

* Perform pow step after PPS

* Update BSP.cpp

* Fix timer output

* QC3

* Add tip resistance view

* Hold PD negotiation until detection is done for tip res

* Get Thermal mass

* Tip res =0 protection

* Update PIDThread.cpp

* Update GUIThread.cpp

* Rewrite tip resistance measurement

* Update GUIThread.cpp

* Fix fallback

* Far better tip resistance measurement

* Fix QC 0.6V D-

* Convert the interpolator to int32

* Correct the NTC lookup

* Update BSP.cpp

* Update Setup.cpp

* .

Update configuration #defines

More backported functions

* Update usb-pd

* More missed updates

* Refactor BSP

Magic BSP -> PinecilV2
Pine64 BSP -> Pinecil

Update Makefile

* Add Pinecilv2 to CI

* Pinecil v2 multi-lang

Update push.yml

* Update HallSensor.md

* Update README.md

* Fix wrong prestartcheck default

* Fix logo mapping

* Update Makefile

* Remove unused font block

* Style

* Style

* Remove unused timer funcs

* More culling TS80P

* Revert "More culling TS80P"

This reverts commit 2078b89be7.

* Revert "Remove unused timer funcs"

This reverts commit 0c693a89cc.

* Make VBus check maskable

* Remove DMA half transfer

* Drop using brightness and invert icons and go back to text

Saves flash space

* Refactor settings UI drawing descriptions

* Shorten setting function names

* Store bin file assets

* Fix MHP prestart
2022-08-19 15:39:37 +10:00

296 lines
8.6 KiB
C++

// BSP mapping functions
#include "BSP.h"
#include "I2C_Wrapper.hpp"
#include "Pins.h"
#include "Setup.h"
#include "TipThermoModel.h"
#include "configuration.h"
#include "history.hpp"
#include "main.hpp"
#include <IRQ.h>
volatile uint16_t PWMSafetyTimer = 0;
volatile uint8_t pendingPWM = 0;
const uint16_t powerPWM = 255;
static const uint8_t holdoffTicks = 14; // delay of 8 ms
static const uint8_t tempMeasureTicks = 14;
uint16_t totalPWM; // htim2.Init.Period, the full PWM cycle
static bool fastPWM;
static bool infastPWM;
void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); }
#ifdef TEMP_NTC
// Lookup table for the NTC
// Stored as ADCReading,Temp in degC
static const uint16_t NTCHandleLookup[] = {
// ADC Reading , Temp in C
29189, 0, //
29014, 1, //
28832, 2, //
28644, 3, //
28450, 4, //
28249, 5, //
28042, 6, //
27828, 7, //
27607, 8, //
27380, 9, //
27146, 10, //
26906, 11, //
26660, 12, //
26407, 13, //
26147, 14, //
25882, 15, //
25610, 16, //
25332, 17, //
25049, 18, //
24759, 19, //
24465, 20, //
24164, 21, //
23859, 22, //
23549, 23, //
23234, 24, //
22915, 25, //
22591, 26, //
22264, 27, //
21933, 28, //
21599, 29, //
21261, 30, //
20921, 31, //
20579, 32, //
20234, 33, //
19888, 34, //
19541, 35, //
19192, 36, //
18843, 37, //
18493, 38, //
18143, 39, //
17793, 40, //
17444, 41, //
17096, 42, //
16750, 43, //
16404, 44, //
16061, 45, //
// 15719, 46, //
// 15380, 47, //
// 15044, 48, //
// 14710, 49, //
// 14380, 50, //
// 14053, 51, //
// 13729, 52, //
// 13410, 53, //
// 13094, 54, //
// 12782, 55, //
// 12475, 56, //
// 12172, 57, //
// 11874, 58, //
// 11580, 59, //
// 11292, 60, //
};
#endif
uint16_t getHandleTemperature(uint8_t sample) {
int32_t result = getADCHandleTemp(sample);
#ifdef TEMP_NTC
// TS80P uses 100k NTC resistors instead
// NTCG104EF104FT1X from TDK
// For now not doing interpolation
for (uint32_t i = 0; i < (sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t))); i++) {
if (result > NTCHandleLookup[(i * 2) + 0]) {
return NTCHandleLookup[(i * 2) + 1] * 10;
}
}
return 45 * 10;
#endif
#ifdef TEMP_TMP36
// We return the current handle temperature in X10 C
// TMP36 in handle, 0.5V offset and then 10mV per deg C (0.75V @ 25C for
// example) STM32 = 4096 count @ 3.3V input -> But We oversample by 32/(2^2) =
// 8 times oversampling Therefore 32768 is the 3.3V input, so 0.1007080078125
// mV per count So we need to subtract an offset of 0.5V to center on 0C
// (4964.8 counts)
//
result -= 4965; // remove 0.5V offset
// 10mV per C
// 99.29 counts per Deg C above 0C. Tends to read a tad over across all of my sample units
result *= 100;
result /= 994;
return result;
#endif
return 0;
}
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
// ADC maximum is 32767 == 3.3V at input == 28.05V at VIN
// Therefore we can divide down from there
// Multiplying ADC max by 4 for additional calibration options,
// ideal term is 467
uint32_t res = getADCVin(sample);
res *= 4;
res /= divisor;
return res;
}
static void switchToFastPWM(void) {
// 10Hz
infastPWM = true;
totalPWM = powerPWM + tempMeasureTicks + holdoffTicks;
htim2.Instance->ARR = totalPWM;
htim2.Instance->CCR1 = powerPWM + holdoffTicks;
htim2.Instance->PSC = 2690;
}
static void switchToSlowPWM(void) {
// 5Hz
infastPWM = false;
totalPWM = powerPWM + tempMeasureTicks / 2 + holdoffTicks / 2;
htim2.Instance->ARR = totalPWM;
htim2.Instance->CCR1 = powerPWM + holdoffTicks / 2;
htim2.Instance->PSC = 2690 * 2;
}
void setTipPWM(const uint8_t pulse, const bool shouldUseFastModePWM) {
PWMSafetyTimer = 20; // This is decremented in the handler for PWM so that the tip pwm is
// disabled if the PID task is not scheduled often enough.
fastPWM = shouldUseFastModePWM;
pendingPWM = pulse;
}
// These are called by the HAL after the corresponding events from the system
// timers.
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
// Period has elapsed
if (htim->Instance == TIM2) {
// we want to turn on the output again
PWMSafetyTimer--;
// We decrement this safety value so that lockups in the
// scheduler will not cause the PWM to become locked in an
// active driving state.
// While we could assume this could never happen, its a small price for
// increased safety
htim2.Instance->CCR4 = pendingPWM;
if (htim2.Instance->CCR4 && PWMSafetyTimer) {
HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_1);
} else {
HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1);
}
if (fastPWM != infastPWM) {
if (fastPWM) {
switchToFastPWM();
} else {
switchToSlowPWM();
}
}
} else if (htim->Instance == TIM1) {
// STM uses this for internal functions as a counter for timeouts
HAL_IncTick();
}
}
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) {
// This was a when the PWM for the output has timed out
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4) {
HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1);
}
}
void unstick_I2C() {
GPIO_InitTypeDef GPIO_InitStruct;
int timeout = 100;
int timeout_cnt = 0;
// 1. Clear PE bit.
hi2c1.Instance->CR1 &= ~(0x0001);
/**I2C1 GPIO Configuration
PB6 ------> I2C1_SCL
PB7 ------> I2C1_SDA
*/
// 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR).
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = SCL_Pin;
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
GPIO_InitStruct.Pin = SDA_Pin;
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) {
// Move clock to release I2C
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET);
asm("nop");
asm("nop");
asm("nop");
asm("nop");
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
timeout_cnt++;
if (timeout_cnt > timeout)
return;
}
// 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = SCL_Pin;
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
GPIO_InitStruct.Pin = SDA_Pin;
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
// 13. Set SWRST bit in I2Cx_CR1 register.
hi2c1.Instance->CR1 |= 0x8000;
asm("nop");
// 14. Clear SWRST bit in I2Cx_CR1 register.
hi2c1.Instance->CR1 &= ~0x8000;
asm("nop");
// 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register
hi2c1.Instance->CR1 |= 0x0001;
// Call initialization function.
HAL_I2C_Init(&hi2c1);
}
uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; }
uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; }
void BSPInit(void) { switchToFastPWM(); }
void reboot() { NVIC_SystemReset(); }
void delay_ms(uint16_t count) { HAL_Delay(count); }
bool isTipDisconnected() {
uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5;
uint32_t tipTemp = TipThermoModel::getTipInC();
return tipTemp > tipDisconnectedThres;
}
void setStatusLED(const enum StatusLED state) {}
uint8_t preStartChecks() { return 1; }
uint64_t getDeviceID() {
//
return HAL_GetUIDw0() | ((uint64_t)HAL_GetUIDw1() << 32);
}
uint8_t getTipResistanceX10() { return TIP_RESISTANCE; }
uint8_t preStartChecksDone() { return 1; }
uint8_t getTipThermalMass() { return TIP_THERMAL_MASS; }