Files
IronOS/source/Core/Drivers/USBPD.cpp
2025-07-17 19:37:49 +10:00

389 lines
15 KiB
C++

#include "USBPD.h"
#include "configuration.h"
#ifdef POW_PD
#include "BSP_PD.h"
#include "FreeRTOS.h"
#include "Settings.h"
#include "fusb302b.h"
#include "main.hpp"
#include "pd.h"
#include "policy_engine.h"
#ifndef USB_PD_VMAX
#error Max PD Voltage must be defined
#endif
void ms_delay(uint32_t delayms) {
// Convert ms -> ticks
TickType_t ticks = delayms / portTICK_PERIOD_MS;
vTaskDelay(ticks ? ticks : 1); /* Minimum delay = 1 tick */
}
uint32_t get_ms_timestamp() {
// Convert ticks -> ms
return xTaskGetTickCount() * portTICK_PERIOD_MS;
}
bool pdbs_dpm_evaluate_capability(const pd_msg *capabilities, pd_msg *request);
void pdbs_dpm_get_sink_capability(pd_msg *cap, const bool isPD3);
bool EPREvaluateCapabilityFunc(const epr_pd_msg *capabilities, pd_msg *request);
FUSB302 fusb((0x22 << 1), fusb_read_buf, fusb_write_buf, ms_delay); // Create FUSB driver
PolicyEngine pe(fusb, get_ms_timestamp, ms_delay, pdbs_dpm_get_sink_capability, pdbs_dpm_evaluate_capability, EPREvaluateCapabilityFunc, USB_PD_EPR_WATTAGE);
int USBPowerDelivery::detectionState = 0;
bool haveSeenCapabilityOffer = false;
uint16_t requested_voltage_mv = 0;
/* The current draw when the output is disabled */
#define DPM_MIN_CURRENT PD_MA2PDI(100)
// Start processing
bool USBPowerDelivery::start() {
if (fusbPresent() && fusb.fusb_setup()) {
setupFUSBIRQ();
return true;
}
return false;
}
void USBPowerDelivery::IRQOccured() { pe.IRQOccured(); }
bool USBPowerDelivery::negotiationHasWorked() { return pe.pdHasNegotiated(); }
uint8_t USBPowerDelivery::getStateNumber() { return pe.currentStateCode(true); }
void USBPowerDelivery::step() {
while (pe.thread()) {
}
}
void USBPowerDelivery::PPSTimerCallback() { pe.TimersCallback(); }
void USBPowerDelivery::reNegotiate() { pe.renegotiate(); }
bool USBPowerDelivery::negotiationInProgress() {
if (USBPowerDelivery::negotiationComplete()) {
return false;
}
if (haveSeenCapabilityOffer) {
return false;
}
return true;
}
bool USBPowerDelivery::negotiationComplete() {
if (!fusbPresent()) {
return true;
}
return pe.setupCompleteOrTimedOut(getSettingValue(SettingsOptions::PDNegTimeout));
}
bool USBPowerDelivery::fusbPresent() {
if (detectionState == 0) {
if (fusb.fusb_read_id()) {
detectionState = 1;
}
}
return detectionState == 1;
}
bool USBPowerDelivery::isVBUSConnected() {
#if NEEDS_VBUS_PROBE == 1
static uint8_t state = 0;
if (state) {
return state == 1;
}
// Dont run if we havent negotiated
if (!negotiationComplete()) {
return true;
}
if (fusb.isVBUSConnected()) {
state = 1;
return true;
} else {
state = 2;
return false;
}
#else
return false;
#endif
}
uint32_t lastCapabilities[11];
uint32_t *USBPowerDelivery::getLastSeenCapabilities() { return lastCapabilities; }
#ifdef POW_EPR
static unsigned int sqrtI(unsigned long sqrtArg) {
unsigned int answer, x;
unsigned long temp;
if (sqrtArg == 0) {
return 0; // undefined result
}
if (sqrtArg == 1) {
return 1; // identity
}
answer = 0; // integer square root
for (x = 0x8000; x > 0; x = x >> 1) { // 16 bit shift
answer |= x; // possible bit in root
temp = answer * answer; //
if (temp == sqrtArg) {
break; // exact, found it
}
if (temp > sqrtArg) {
answer ^= x; // too large, reverse bit
}
}
return answer; // approximate root
}
#endif
// parseCapabilitiesArray returns true if a valid capability was found
// caps is the array of capabilities objects
// best* are output references
bool parseCapabilitiesArray(const uint8_t numCaps, uint8_t *bestIndex, uint16_t *bestVoltage, uint16_t *bestCurrent, bool *bestIsPPS, bool *bestIsAVS) {
// Walk the given capabilities array; and select the best option
// Given assumption of fixed tip resistance; this can be simplified to highest voltage selection
*bestIndex = 0xFF; // Mark unselected
*bestVoltage = 5000; // Default 5V
// Fudge of 0.5 ohms to round up a little to account for us always having off periods in PWM
uint8_t tipResistance = getTipResistanceX10();
if (getSettingValue(SettingsOptions::USBPDMode) == usbpdMode_t::DEFAULT) {
tipResistance += 5;
}
#ifdef MODEL_HAS_DCDC
// If this device has step down DC/DC inductor to smooth out current spikes
// We can instead ignore resistance and go for max voltage we can accept; and rely on the DC/DC regulation to keep under current limit
tipResistance = 255; // (Push to 25.5 ohms to effectively disable this check)
#endif
for (uint8_t i = 0; i < numCaps; i++) {
if ((lastCapabilities[i] & PD_PDO_TYPE) == PD_PDO_TYPE_FIXED) {
// This is a fixed PDO entry
// Evaluate if it can produve sufficient current based on the TIP_RESISTANCE (ohms*10)
// V=I*R -> V/I => minimum resistance, if our tip resistance is >= this then we can use this supply
int voltage_mv = PD_PDV2MV(PD_PDO_SRC_FIXED_VOLTAGE_GET(lastCapabilities[i])); // voltage in mV units
int current_a_x100 = PD_PDO_SRC_FIXED_CURRENT_GET(lastCapabilities[i]); // current in 10mA units
int min_resistance_ohmsx10 = voltage_mv / current_a_x100;
if (voltage_mv > 0) {
if (voltage_mv <= (USB_PD_VMAX * 1000)) {
if (min_resistance_ohmsx10 <= tipResistance) {
// This is a valid power source we can select as
if (voltage_mv > *bestVoltage) {
// Higher voltage and valid, select this instead
*bestIndex = i;
*bestVoltage = voltage_mv;
*bestCurrent = current_a_x100;
*bestIsPPS = false;
*bestIsAVS = false;
}
}
}
}
} else if ((lastCapabilities[i] & PD_PDO_TYPE) == PD_PDO_TYPE_AUGMENTED && getSettingValue(SettingsOptions::USBPDMode)) {
bool sourceIsEPRCapable = lastCapabilities[0] & PD_PDO_SRC_FIXED_EPR_CAPABLE;
bool isPPS = false;
bool isAVS = false;
if (sourceIsEPRCapable) {
isPPS = (lastCapabilities[i] & PD_APDO_TYPE) == PD_APDO_TYPE_PPS;
isAVS = (lastCapabilities[i] & PD_APDO_TYPE) == PD_APDO_TYPE_AVS;
} else {
isPPS = true; // Assume PPS if no EPR support
}
if (isPPS) {
// If this is a PPS slot, calculate the max voltage in the PPS range that can we be used and maintain
uint16_t max_voltage = PD_PAV2MV(PD_APDO_PPS_MAX_VOLTAGE_GET(lastCapabilities[i]));
// uint16_t min_voltage = PD_PAV2MV(PD_APDO_PPS_MIN_VOLTAGE_GET(lastCapabilities[i]));
uint16_t max_current = PD_PAI2CA(PD_APDO_PPS_CURRENT_GET(lastCapabilities[i])); // max current in 10mA units
// Using the current and tip resistance, calculate the ideal max voltage
// if this is range, then we will work with this voltage
// if this is not in range; then max_voltage can be safely selected
int ideal_voltage_mv = (tipResistance * max_current);
if (ideal_voltage_mv > max_voltage) {
ideal_voltage_mv = max_voltage; // constrain to what this PDO offers
}
if (ideal_voltage_mv > 20000) {
ideal_voltage_mv = 20000; // Limit to 20V as some advertise 21 but are not stable at 21
}
if (ideal_voltage_mv > (USB_PD_VMAX * 1000)) {
ideal_voltage_mv = (USB_PD_VMAX * 1000); // constrain to model max voltage safe to select
}
if (ideal_voltage_mv > *bestVoltage) {
*bestIndex = i;
*bestVoltage = ideal_voltage_mv;
*bestCurrent = max_current;
*bestIsPPS = true;
*bestIsAVS = false;
}
}
#ifdef POW_EPR
else if (isAVS) {
uint16_t max_voltage = PD_PAV2MV(PD_APDO_AVS_MAX_VOLTAGE_GET(lastCapabilities[i]));
uint8_t max_wattage = PD_APDO_AVS_MAX_POWER_GET(lastCapabilities[i]);
// W = v^2/tip_resistance => Wattage*tip_resistance == Max_voltage^2
auto ideal_max_voltage = sqrtI((max_wattage * tipResistance) / 10) * 1000;
if (ideal_max_voltage > (USB_PD_VMAX * 1000)) {
ideal_max_voltage = (USB_PD_VMAX * 1000); // constrain to model max voltage safe to select
}
if (ideal_max_voltage > (max_voltage)) {
ideal_max_voltage = (max_voltage); // constrain to model max voltage safe to select
}
auto operating_current = (ideal_max_voltage / tipResistance); // Current in centiamps
if (ideal_max_voltage > *bestVoltage) {
*bestIndex = i;
*bestVoltage = ideal_max_voltage;
*bestCurrent = operating_current;
*bestIsAVS = true;
*bestIsPPS = false;
}
}
#endif
}
}
// Now that the best index is known, set the current values
return *bestIndex != 0xFF; // have we selected one
}
bool EPREvaluateCapabilityFunc(const epr_pd_msg *capabilities, pd_msg *request) {
#ifdef POW_EPR
// Select any EPR slots up to USB_PD_VMAX
memset(lastCapabilities, 0, sizeof(lastCapabilities));
memcpy(lastCapabilities, capabilities->obj, sizeof(lastCapabilities));
// PDO slots 1-7 shall be the standard PDO's
// PDO slots 8-11 shall be the >20V slots
uint8_t numobj = 11;
uint8_t bestIndex = 0xFF;
uint16_t bestIndexVoltage = 0;
uint16_t bestIndexCurrent = 0;
bool bestIsPPS = false;
bool bestIsAVS = false;
if (parseCapabilitiesArray(numobj, &bestIndex, &bestIndexVoltage, &bestIndexCurrent, &bestIsPPS, &bestIsAVS)) {
/* We got what we wanted, so build a request for that */
request->hdr = PD_MSGTYPE_EPR_REQUEST | PD_NUMOBJ(2);
request->obj[1] = lastCapabilities[bestIndex]; // Copy PDO into slot 2
if (bestIsAVS) {
request->obj[0] = PD_RDO_PROG_CURRENT_SET(PD_CA2PAI(bestIndexCurrent)) | PD_RDO_PROG_VOLTAGE_SET(PD_MV2APS(bestIndexVoltage));
} else if (bestIsPPS) {
request->obj[0] = PD_RDO_PROG_CURRENT_SET(PD_CA2PAI(bestIndexCurrent)) | PD_RDO_PROG_VOLTAGE_SET(PD_MV2PRV(bestIndexVoltage));
} else {
request->obj[0] = PD_RDO_FV_MAX_CURRENT_SET(bestIndexCurrent) | PD_RDO_FV_CURRENT_SET(bestIndexCurrent);
}
request->obj[0] |= PD_RDO_EPR_CAPABLE;
request->obj[0] |= PD_RDO_NO_USB_SUSPEND;
request->obj[0] |= PD_RDO_OBJPOS_SET(bestIndex + 1);
// We dont do usb
// request->obj[0] |= PD_RDO_USB_COMMS;
/* Update requested voltage */
requested_voltage_mv = bestIndexVoltage;
powerSupplyWattageLimit = bestIndexVoltage * bestIndexCurrent / 100 / 1000; // Set watts for limit from PSU limit
} else {
/* Nothing matched (or no configuration), so get 5 V at low current */
request->hdr = PD_MSGTYPE_EPR_REQUEST | PD_NUMOBJ(2);
request->obj[1] = lastCapabilities[0];
request->obj[0] = PD_RDO_FV_MAX_CURRENT_SET(100) | PD_RDO_FV_CURRENT_SET(100) | PD_RDO_NO_USB_SUSPEND | PD_RDO_OBJPOS_SET(1);
// We dont do usb
// request->obj[0] |= PD_RDO_USB_COMMS;
/* Update requested voltage */
requested_voltage_mv = 5000;
}
return true;
#endif
return false;
}
bool pdbs_dpm_evaluate_capability(const pd_msg *capabilities, pd_msg *request) {
memset(lastCapabilities, 0, sizeof(lastCapabilities));
memcpy(lastCapabilities, capabilities->obj, sizeof(uint32_t) * 7);
haveSeenCapabilityOffer = true;
/* Get the number of PDOs */
uint8_t numobj = PD_NUMOBJ_GET(capabilities);
/* Make sure we have configuration */
/* Look at the PDOs to see if one matches our desires */
// Look against USB_PD_Desired_Levels to select in order of preference
uint8_t bestIndex = 0xFF;
uint16_t bestIndexVoltage = 0;
uint16_t bestIndexCurrent = 0;
bool bestIsPPS = false;
bool bestIsAVS = false;
if (parseCapabilitiesArray(numobj, &bestIndex, &bestIndexVoltage, &bestIndexCurrent, &bestIsPPS, &bestIsAVS)) {
/* We got what we wanted, so build a request for that */
request->hdr = PD_MSGTYPE_REQUEST | PD_NUMOBJ(1);
if (bestIsPPS) {
request->obj[0] = PD_RDO_PROG_CURRENT_SET(PD_CA2PAI(bestIndexCurrent)) | PD_RDO_PROG_VOLTAGE_SET(PD_MV2PRV(bestIndexVoltage)) | PD_RDO_NO_USB_SUSPEND | PD_RDO_OBJPOS_SET(bestIndex + 1);
} else {
request->obj[0] = PD_RDO_FV_MAX_CURRENT_SET(bestIndexCurrent) | PD_RDO_FV_CURRENT_SET(bestIndexCurrent) | PD_RDO_NO_USB_SUSPEND | PD_RDO_OBJPOS_SET(bestIndex + 1);
}
// We dont do usb
// request->obj[0] |= PD_RDO_USB_COMMS;
#ifdef POW_EPR
request->obj[0] |= PD_RDO_EPR_CAPABLE;
#endif
/* Update requested voltage */
requested_voltage_mv = bestIndexVoltage;
powerSupplyWattageLimit = bestIndexVoltage * bestIndexCurrent / 100 / 1000; // Set watts for limit from PSU limit
} else {
/* Nothing matched (or no configuration), so get 5 V at low current */
request->hdr = PD_MSGTYPE_REQUEST | PD_NUMOBJ(1);
request->obj[0] = PD_RDO_FV_MAX_CURRENT_SET(100) | PD_RDO_FV_CURRENT_SET(100) | PD_RDO_NO_USB_SUSPEND | PD_RDO_OBJPOS_SET(1);
// We dont do usb
// request->obj[0] |= PD_RDO_USB_COMMS;
/* Update requested voltage */
requested_voltage_mv = 5000;
}
// Even if we didnt match, we return true as we would still like to handshake on 5V at the minimum
return true;
}
void add_v_record(pd_msg *cap, uint16_t voltage_mv, int numobj) {
uint16_t current = (voltage_mv) / getTipResistanceX10(); // In centi-amps
/* Add a PDO for the desired power. */
cap->obj[numobj] = PD_PDO_TYPE_FIXED | PD_PDO_SNK_FIXED_VOLTAGE_SET(PD_MV2PDV(voltage_mv)) | PD_PDO_SNK_FIXED_CURRENT_SET(current);
}
void pdbs_dpm_get_sink_capability(pd_msg *cap, const bool isPD3) {
/* Keep track of how many PDOs we've added */
int numobj = 0;
/* If we have no configuration or want something other than 5 V, add a PDO
* for vSafe5V */
/* Minimum current, 5 V, and higher capability. */
cap->obj[numobj++] = PD_PDO_TYPE_FIXED | PD_PDO_SNK_FIXED_VOLTAGE_SET(PD_MV2PDV(5000)) | PD_PDO_SNK_FIXED_CURRENT_SET(DPM_MIN_CURRENT);
// Voltages must be in order of lowest -> highest
#if USB_PD_VMAX >= 20
add_v_record(cap, 9000, numobj);
numobj++;
add_v_record(cap, 15000, numobj);
numobj++;
add_v_record(cap, 20000, numobj);
numobj++;
#elif USB_PD_VMAX >= 15
add_v_record(cap, 9000, numobj);
numobj++;
add_v_record(cap, 12000, numobj);
numobj++;
add_v_record(cap, 15000, numobj);
numobj++;
#elif USB_PD_VMAX >= 12
add_v_record(cap, 9000, numobj);
numobj++;
add_v_record(cap, 12000, numobj);
numobj++;
#elif USB_PD_VMAX >= 9
add_v_record(cap, 9000, numobj);
numobj++;
#endif
/* Set the USB communications capable flag. */
cap->obj[0] |= PD_PDO_SNK_FIXED_USB_COMMS;
/* Set the Sink_Capabilities message header */
cap->hdr = PD_DATAROLE_UFP | PD_SPECREV_3_0 | PD_POWERROLE_SINK | PD_MSGTYPE_SINK_CAPABILITIES | PD_NUMOBJ(numobj);
}
#endif