// BSP mapping functions #include "BSP.h" #include "BootLogo.h" #include "I2C_Wrapper.hpp" #include "IRQ.h" #include "Pins.h" #include "Settings.h" #include "Setup.h" #include "TipThermoModel.h" #include "configuration.h" #include "gd32vf103_timer.h" #include "history.hpp" #include "main.hpp" const uint16_t powerPWM = 255; const uint8_t holdoffTicks = 10; const uint8_t tempMeasureTicks = 14; uint16_t totalPWM; // Total length of the cycle's ticks void resetWatchdog() { fwdgt_counter_reload(); } uint16_t getHandleTemperature(uint8_t sample) { #ifdef TEMP_TMP36 // We return the current handle temperature in X10 C // TMP36 in handle, 0.5V offset and then 10mV per deg C (0.75V @ 25C for // example) STM32 = 4096 count @ 3.3V input -> But We oversample by 32/(2^2) = // 8 times oversampling Therefore 32768 is the 3.3V input, so 0.1007080078125 // mV per count So we need to subtract an offset of 0.5V to center on 0C // (4964.8 counts) // int32_t result = getADCHandleTemp(sample); result -= 4965; // remove 0.5V offset // 10mV per C // 99.29 counts per Deg C above 0C result *= 100; result /= 993; return result; #else #error Pinecil only uses TMP36 #endif } uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) { uint32_t res = getADCVin(sample); res *= 4; res /= divisor; return res; } void unstick_I2C() { /* configure SDA/SCL for GPIO */ GPIO_BC(GPIOB) |= SDA_Pin | SCL_Pin; gpio_init(SDA_GPIO_Port, GPIO_MODE_OUT_OD, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin); for (int i = 0; i < 8; i++) { asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); GPIO_BOP(GPIOB) |= SCL_Pin; asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); GPIO_BOP(GPIOB) &= SCL_Pin; } /* connect PB6 to I2C0_SCL */ /* connect PB7 to I2C0_SDA */ gpio_init(SDA_GPIO_Port, GPIO_MODE_AF_OD, GPIO_OSPEED_50MHZ, SDA_Pin | SCL_Pin); } uint8_t getButtonA() { return (gpio_input_bit_get(KEY_A_GPIO_Port, KEY_A_Pin) == SET) ? 1 : 0; } uint8_t getButtonB() { return (gpio_input_bit_get(KEY_B_GPIO_Port, KEY_B_Pin) == SET) ? 1 : 0; } void reboot() { eclic_system_reset(); } void delay_ms(uint16_t count) { delay_1ms(count); } uint32_t __get_IPSR(void) { return 0; // To shut-up CMSIS } bool isTipDisconnected() { uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5; uint32_t tipTemp = TipThermoModel::getTipInC(); return tipTemp > tipDisconnectedThres; } void setStatusLED(const enum StatusLED state) {} void setBuzzer(bool on) {} uint8_t preStartChecks() { return 1; } uint64_t getDeviceID() { return dbg_id_get(); } uint8_t getTipResistanceX10() { uint8_t user_selected_tip = getUserSelectedTipResistance(); if (user_selected_tip == 0) { return TIP_RESISTANCE; // Auto mode } return user_selected_tip; } bool isTipShorted() { return false; } uint8_t preStartChecksDone() { return 1; } uint16_t getTipThermalMass() { return TIP_THERMAL_MASS; } uint16_t getTipInertia() { return TIP_THERMAL_MASS; } void showBootLogo(void) { BootLogo::handleShowingLogo((uint8_t *)FLASH_LOGOADDR); }