Pinecil v2 tune via PID (#1827)

* Start PWM after adc irq fully done

* Filter len 4

* Use comparitor 2 on timer for wrap around

* Update IRQ.cpp

* Tip measurements are uint16_t

Update BSP.cpp

Update BSP.cpp

* WiP PID

move pid tuning to config

Update PIDThread.cpp

* Handle PWM Timer gitchy comparitor

* Tuning

* Dampen with Kd

* Cleaning up

* Use TemperatureType_t for getTipTemp()

* Add small rolling average to user GUI temp to reduce flicker

* Trigger PID when adc is skipped (will use old values)
This commit is contained in:
Ben V. Brown
2023-10-21 08:21:08 +11:00
committed by GitHub
parent 9c7ad43a76
commit c308fe8cc2
16 changed files with 271 additions and 178 deletions

View File

@@ -10,6 +10,7 @@
#include "Settings.h"
#include "TipThermoModel.h"
#include "cmsis_os.h"
#include "configuration.h"
#include "history.hpp"
#include "main.hpp"
#include "power.hpp"
@@ -22,7 +23,7 @@ volatile TemperatureType_t currentTempTargetDegC = 0; // Current temperature t
int32_t powerSupplyWattageLimit = 0;
bool heaterThermalRunaway = false;
static int32_t getPIDResultX10Watts(TemperatureType_t tError);
static int32_t getPIDResultX10Watts(TemperatureType_t set_point, TemperatureType_t current_value);
static void detectThermalRunaway(const TemperatureType_t currentTipTempInC, const TemperatureType_t tError);
static void setOutputx10WattsViaFilters(int32_t x10Watts);
static int32_t getX10WattageLimits();
@@ -71,10 +72,9 @@ void startPIDTask(void const *argument __unused) {
if (PIDTempTarget > TipThermoModel::getTipMaxInC()) {
PIDTempTarget = TipThermoModel::getTipMaxInC();
}
TemperatureType_t tError = PIDTempTarget - currentTipTempInC;
detectThermalRunaway(currentTipTempInC, tError);
x10WattsOut = getPIDResultX10Watts(tError);
detectThermalRunaway(currentTipTempInC, PIDTempTarget - currentTipTempInC);
x10WattsOut = getPIDResultX10Watts(PIDTempTarget, currentTipTempInC);
} else {
detectThermalRunaway(currentTipTempInC, 0);
}
@@ -89,6 +89,53 @@ void startPIDTask(void const *argument __unused) {
}
}
#ifdef TIP_CONTROL_PID
template <class T, T Kp, T Ki, T Kd, T integral_limit_scale> struct PID {
T previous_error_term;
T integration_running_sum;
T update(const T set_point, const T new_reading, const TickType_t interval_ms, const T max_output) {
const T target_delta = set_point - new_reading;
// Proportional term
const T kp_result = Kp * target_delta;
// Integral term as we use mixed sampling rates, we cant assume a constant sample interval
// Thus we multiply this out by the interval time to ~= dv/dt
// Then the shift by 1000 is ms -> Seconds
integration_running_sum += (target_delta * interval_ms * Ki) / 1000;
// We constrain integration_running_sum to limit windup
// This is not overly required for most use cases but can prevent large overshoot in constrained implementations
if (integration_running_sum > integral_limit_scale * max_output) {
integration_running_sum = integral_limit_scale * max_output;
} else if (integration_running_sum < -integral_limit_scale * max_output) {
integration_running_sum = -integral_limit_scale * max_output;
}
// Calculate the integral term, we use a shift 100 to get precision in integral as we often need small amounts
T ki_result = integration_running_sum / 100;
// Derivative term
T derivative = (target_delta - previous_error_term);
T kd_result = ((Kd * derivative) / (T)(interval_ms));
// Summation of the outputs
T output = kp_result + ki_result + kd_result;
// Restrict to max / 0
if (output > max_output)
output = max_output;
else if (output < 0)
output = 0;
// Save target_delta to previous target_delta
previous_error_term = target_delta;
return output;
}
};
#else
template <class T = TemperatureType_t> struct Integrator {
T sum;
@@ -114,12 +161,20 @@ template <class T = TemperatureType_t> struct Integrator {
T get(bool positiveOnly = true) const { return (positiveOnly) ? ((sum > 0) ? sum : 0) : sum; }
};
int32_t getPIDResultX10Watts(TemperatureType_t setpointDelta) {
static TickType_t lastCall = 0;
static Integrator<TemperatureType_t> powerStore = {0};
#endif
int32_t getPIDResultX10Watts(TemperatureType_t set_point, TemperatureType_t current_reading) {
static TickType_t lastCall = 0;
const TickType_t rate = TICKS_SECOND / (xTaskGetTickCount() - lastCall);
lastCall = xTaskGetTickCount();
#ifdef TIP_CONTROL_PID
static PID<TemperatureType_t, TIP_PID_KP, TIP_PID_KI, TIP_PID_KD, 5> pid = {0, 0};
const TickType_t interval = (xTaskGetTickCount() - lastCall);
#else
static Integrator<TemperatureType_t> powerStore = {0};
const TickType_t rate = TICKS_SECOND / (xTaskGetTickCount() - lastCall);
#endif
lastCall = xTaskGetTickCount();
// Sandman note:
// PID Challenge - we have a small thermal mass that we to want heat up as fast as possible but we don't
// want to overshot excessively (if at all) the set point temperature. In the same time we have 'imprecise'
@@ -141,11 +196,16 @@ int32_t getPIDResultX10Watts(TemperatureType_t setpointDelta) {
// tip temperature with (Delta Temperature ) °C in 1 second.
// Note on powerStore. On update, if the value is provided in X10 (W) units then inertia shall be provided
// in X10 (J / °C) units as well.
return powerStore.update(((TemperatureType_t)getTipThermalMass()) * setpointDelta, // the required power
getTipInertia(), // Inertia, smaller numbers increase dominance of the previous value
2, // gain
rate, // PID cycle frequency
#ifdef TIP_CONTROL_PID
return pid.update(set_point, current_reading, interval, getX10WattageLimits());
#else
return powerStore.update(((TemperatureType_t)getTipThermalMass()) * (set_point - current_reading), // the required power
getTipInertia(), // Inertia, smaller numbers increase dominance of the previous value
2, // gain
rate, // PID cycle frequency
getX10WattageLimits());
#endif
}
void detectThermalRunaway(const TemperatureType_t currentTipTempInC, const TemperatureType_t tError) {